• World Neurosurg · Apr 2024

    Review

    Innovations in Spine Surgery: A Narrative Review of Current Integrative Technologies.

    • George Bcharah, Nithin Gupta, Nicholas Panico, Spencer Winspear, Austin Bagley, Morgan Turnow, Randy D'Amico, and Alvan-Emeka K Ukachukwu.
    • Mayo Clinic Alix School of Medicine, Scottsdale, Arizona, USA.
    • World Neurosurg. 2024 Apr 1; 184: 127136127-136.

    AbstractNeurosurgical technologies have become increasingly more adaptive, featuring real-time and patient-specific guidance in preoperative, intraoperative, and postoperative settings. This review offers insight into how these integrative innovations compare with conventional approaches in spine surgery, focusing on machine learning (ML), artificial intelligence, augmented reality and virtual reality, and spinal navigation systems. Data on technology applications, diagnostic and procedural accuracy, intraoperative times, radiation exposures, postoperative outcomes, and costs were extracted and compared with conventional methods to assess their advantages and limitations. Preoperatively, augmented reality and virtual reality have applications in surgical training and planning that are more immersive, case specific, and risk-free and have been shown to enhance accuracy and reduce complications. ML algorithms have demonstrated high accuracy in predicting surgical candidacy (up to 92.1%) and tailoring personalized treatments based on patient-specific variables. Intraoperatively, advantages include more accurate pedicle screw insertion (96%-99% with ML), enhanced visualization, reduced radiation exposure (49 μSv with O-arm navigation vs. 556 μSv with fluoroscopy), increased efficiency, and potential for fewer intraoperative complications compared with conventional approaches. Postoperatively, certain ML and artificial intelligence models have outperformed conventional methods in predicting all postoperative complications of >6000 patients as well as predicting variables contributing to in-hospital and 90-day mortality. However, applying these technologies comes with limitations, such as longer operative times (up to 35.6% longer) with navigation, dependency on datasets, costs, accessibility, steep learning curve, and inherent software malfunctions. As these technologies advance, continuing to assess their efficacy and limitations will be crucial to their successful integration within spine surgery.Copyright © 2023 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.