• Burns · Apr 2024

    Stomatin promotes neutrophil degranulation and vascular leakage in the early stage after severe burn via enhancement of the intracellular binding of neutrophil primary granules to F-actin.

    • Zhechen Zhu, Zaiwen Guo, Xi Gao, Yi Chen, Jiamin Huang, Linbin Li, and Bingwei Sun.
    • Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China; Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
    • Burns. 2024 Apr 1; 50 (3): 653665653-665.

    BackgroundThe pathophysiology of severe burn injuries in the early stages involves complex emergency responses, inflammatory reactions, immune system activation, and a significant increase in vascular permeability. Neutrophils, crucial innate immune cells, undergo rapid mobilization and intricate pathophysiological changes during this period. However, the dynamic alterations and detailed mechanisms governing their biological behavior remain unclear. Stomatin protein, an essential component of the cell membrane, stabilizes and regulates the membrane and participates in cell signal transduction. Additionally, it exhibits elevated expression in various inflammatory diseases. While Stomatin expression has been observed in the cell and granule membranes of neutrophils, its potential involvement in post-activation functional regulation requires further investigation.MethodsNeutrophils were isolated from human peripheral blood, mouse peripheral blood, and mouse bone marrow using the magnetic bead separation method. Flow cytometry was used to assess neutrophil membrane surface markers, ROS levels, and phagocytic activity. The expression of the Stomatin gene and protein was examined using quantitative real-time polymerase chain reaction and western blotting methods, respectively. Furthermore, the enzyme-linked immunosorbent assay was used to evaluate the expression of neutrophil-derived inflammatory mediators (myeloperoxidase (MPO), neutrophil elastase (NE), and matrix metalloproteinase 9 (MMP9)) in the plasma. Images and videos of vascular leakage in mice were captured using in vivo laser confocal imaging technology, whereas in vitro confocal microscopy was used to study the localization and levels of the cytoskeleton, CD63, and Stomatin protein in neutrophils.ResultsThis study made the following key findings: (1) Early after severe burn, neutrophil dysfunction is present in the peripheral blood characterized by significant bone marrow mobilization, excessive degranulation, and impaired release and chemotaxis of inflammatory mediators (MPO, NE, and MMP9). (2) After burn injury, expression of both the stomatin gene and protein in neutrophils was upregulated. (3) Knockout (KO) of the stomatin gene in mice partially inhibited neutrophil excessive degranulation, potentially achieved via reduced production of primary granules and weakened binding of primary granules to the cell skeleton protein F-actin. (4) In severely burned mice, injury led to notable early-stage vascular leakage and lung damage, whereas Stomatin gene KO significantly ameliorated lung injury and vascular leakage.ConclusionsStomatin promotes neutrophil degranulation in the early stage of severe burn injury via increasing the production of primary granules and enhancing their binding to the cell skeleton protein F-actin in neutrophils. Consequently, this excessive degranulation results in aggravated vascular leakage and lung injury.Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.