-
Am. J. Respir. Crit. Care Med. · May 2024
Deep Learning Classification of Usual Interstitial Pneumonia Predicts Outcomes.
- Stephen M Humphries, Devlin Thieke, David Baraghoshi, Matthew J Strand, Jeffrey J Swigris, Kum Ju Chae, Hye Jeon Hwang, Andrea S Oh, Kevin R Flaherty, Ayodeji Adegunsoye, Renea Jablonski, Cathryn T Lee, Aliya N Husain, Jonathan H Chung, Mary E Strek, and David A Lynch.
- Department of Radiology.
- Am. J. Respir. Crit. Care Med. 2024 May 1; 209 (9): 112111311121-1131.
AbstractRationale: Computed tomography (CT) enables noninvasive diagnosis of usual interstitial pneumonia (UIP), but enhanced image analyses are needed to overcome the limitations of visual assessment. Objectives: Apply multiple instance learning (MIL) to develop an explainable deep learning algorithm for prediction of UIP from CT and validate its performance in independent cohorts. Methods: We trained an MIL algorithm using a pooled dataset (n = 2,143) and tested it in three independent populations: data from a prior publication (n = 127), a single-institution clinical cohort (n = 239), and a national registry of patients with pulmonary fibrosis (n = 979). We tested UIP classification performance using receiver operating characteristic analysis, with histologic UIP as ground truth. Cox proportional hazards and linear mixed-effects models were used to examine associations between MIL predictions and survival or longitudinal FVC. Measurements and Main Results: In two cohorts with biopsy data, MIL improved accuracy for histologic UIP (area under the curve, 0.77 [n = 127] and 0.79 [n = 239]) compared with visual assessment (area under the curve, 0.65 and 0.71). In cohorts with survival data, MIL-UIP classifications were significant for mortality (n = 239, mortality to April 2021: unadjusted hazard ratio, 3.1; 95% confidence interval [CI], 1.96-4.91; P < 0.001; and n = 979, mortality to July 2022: unadjusted hazard ratio, 3.64; 95% CI, 2.66-4.97; P < 0.001). Individuals classified as UIP positive by the algorithm had a significantly greater annual decline in FVC than those classified as UIP negative (-88 ml/yr vs. -45 ml/yr; n = 979; P < 0.01), adjusting for extent of lung fibrosis. Conclusions: Computerized assessment using MIL identifies clinically significant features of UIP on CT. Such a method could improve confidence in radiologic assessment of patients with interstitial lung disease, potentially enabling earlier and more precise diagnosis.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.