• J. Cardiothorac. Vasc. Anesth. · Mar 2024

    Evaluation of Intraoperative Left-Ventricular Diastolic Function by Myocardial Strain in On-Pump Coronary Artery Bypass Surgery.

    • Jakob Labus, Jens Fassl, André Foit, Oliver Mehler, Parwis Rahmanian, Thorsten Wahlers, Bernd W Böttiger, Wolfgang A Wetsch, and Alexander Mathes.
    • Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany. Electronic address: jakob.labus@uk-koeln.de.
    • J. Cardiothorac. Vasc. Anesth. 2024 Mar 1; 38 (3): 638648638-648.

    ObjectivesLeft ventricular (LV) diastolic function strongly predicts outcomes after cardiac surgery, but there is no consensus about appropriate intraoperative assessment. Recently, intraoperative diastolic strain-based measurements assessed by transesophageal echocardiography (TEE) have shown a strong correlation with LV relaxation, compliance, and filling, but there are no reports about evaluation through the entire perioperative period. Therefore, the authors describe the intraoperative course of this novel assessment technique in patients who underwent coronary artery bypass grafting, and compare it with conventional echocardiographic measures and common grading algorithms of LV diastolic dysfunction (LVDD).DesignProspectively obtained data.SettingA single university hospital.ParticipantsThirty adult patients scheduled for isolated on-pump coronary artery bypass grafting surgery with preoperative preserved left and right ventricular systolic function, without significant heart valve disease and pulmonary hypertension, and an uneventful intraoperative course were included.InterventionsTransesophageal echocardiography was performed after induction of anesthesia (T1), after termination of cardiopulmonary bypass (T2), and after sternal closure (T3). Echocardiographic evaluation was performed in stable hemodynamic conditions, in sinus rhythm or atrial pacing, and vasopressor support with norepinephrine ≤0.1 µg/kg/min.Measurements And Main ResultsStrain-based measurements of peak longitudinal strain rate during isovolumetric relaxation (SR-IVR) and during early (SR-E) and late (SR-A) LV filling were assessed using EchoPAC v204 software (GE Vingmed Ultrasound AS, Norway). Evaluation of conventional echocardiographic parameters included transmitral Doppler measures of early (E) and late (A) LV filling, as well as lateral-tissue Doppler velocity assessed during early (e´) and late (a´) LV filling, tricuspid regurgitation, and left atrial dilatation. Evaluation and grading of LV diastolic function by myocardial strain was feasible in all included patients at all time points of assessment. Using conventional grading algorithms, however, a substantial number of patients could not be sufficiently graded, falling into an indeterminate zone and not reliably estimating LVDD (T1, 40%; T2, 33%; T3, 36%). There was significant impairment of LV diastolic function after bypass, as measured by SR-IVR (T1 v T2, 0.28 s-1 [IQR 0.23; 0.31) v 0.18 s-1 [IQR 0.14; 0.22]; p < 0.001), SR-E (T1 v T2, 0.95 ± 0.34 s-1v 1.28 ± 0.36 s-1; p < 0.001), and E/SR-IVR (T1 v T2, 2.3 ± 1.0 m v 4.5 ± 2.1 m; p < 0.001]. Conventional echocardiographic measures remained unchanged during the same period (E/A T1 v T2, 1.27 [IQR 0.94; 1.59] v 1.21 [IQR 1.03; 1.47] [p = 1] and E/e´ T1 v T2, 7.0 [IQR 5.3; 9.6] v 6.35 [IQR 5.7; 9.9] [p = 0.9]). There were no significant changes in the values of SR-IVR, SR-E, SR-A, E/SR-IVR, E/A, and E/e´ before and after sternal closure (T2 v T3).ConclusionIntraoperative assessment of strain-based measurements of LV diastolic function and strain-based LVDD grading was feasible in this group of selected patients, whereas conventional parameters failed to describe LVDD sufficiently in a substantial number of patients. Diastolic strain-based measurements showed impairment of LV relaxation and compliance after bypass, which was not detected by conventional echocardiographic parameters. Therefore, diastolic myocardial strain analysis might be more sensitive in detecting myocardial diastolic dysfunction by TEE in the perioperative setting, with its dynamic changes of loading conditions, and might provide valuable and additional information on the perioperative changes of LV diastolic function.Copyright © 2023 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.