• Medicine · Dec 2023

    Exploring the potential mechanism of Simiao Yongan decoction in the treatment of diabetic peripheral vascular disease based on network pharmacology and molecular docking technology.

    • Fang Cao, Yongkang Zhang, Yuan Zong, Xia Feng, Junlin Deng, Yuzhen Wang, and Yemin Cao.
    • Shanghai University of Traditional Chinese Medicine, Shanghai, China.
    • Medicine (Baltimore). 2023 Dec 29; 102 (52): e36762e36762.

    AbstractThe study aims to investigate the potential action targets and molecular mechanisms of Simiao Yongan decoction (SMYAD) in treating diabetic peripheral vascular disease (DPVD) by utilizing network pharmacology analysis and molecular docking technology. The components and targets of SMYAD were screened using the TCMSP database, while DPVD-related genes were obtained from the GeneCards, OMIM, and Disgenet databases. After intersecting the gene sets, a Protein-Protein Interaction (PPI) network was established, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out. The practical chemical components and core targets identified were molecularly docked using AutoDock software. A total of 126 active compounds were screened from which 25 main components included quercetin, rutoside, hesperidin, naringin, and β-sitosterol were determined to be the active components most associated with the core targets. A total of 224 common target genes were obtained. Among them, JUN, AKT1, MAPK3, TP53, STAT3, RELA, MAPK1, FOS, and others are the expected core targets of traditional Chinese medicine. The top-ranked GO enrichment analysis results included 727 biological processes (BP), 153 molecular functions (MF), and 102 cellular components (CC). KEGG pathway enrichment analysis involved mainly 178 signaling pathways, such as cancer signaling pathway, AGE-RAGE signaling pathway, interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, endocrine resistance signaling pathway, cell aging signaling pathway, and so on. The molecular docking results demonstrate that the principal chemical components of SMYAD exhibit considerable potential for binding to the core targets. SMYAD has the potential to treat DPVD through various components, targets, and pathways. Its mechanism of action requires further experimental investigation.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…