• Medicine · Jan 2024

    Preliminary study on molecular mechanism of COVID-19 intervention by Polygonum cuspidatum through computer bioinformatics.

    • Tao Liu, Rui Han, and Yiqi Yan.
    • Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
    • Medicine (Baltimore). 2024 Jan 12; 103 (2): e36918e36918.

    AbstractTo explore the mechanism of action of Polygonum cuspidatum in intervening in coronavirus disease 2019 using a network pharmacology approach and to preliminarily elucidate its mechanism. The active ingredients and action targets of P cuspidatum were classified and summarized using computer virtual technology and molecular informatics methods. The active ingredients and relevant target information of P cuspidatum were identified using the TCM Systematic Pharmacology Database and Analysis Platform, the TCM Integrated Pharmacology Research Platform v2.0, and the SwissTarget database. The GENECARDS database was used to search for COVID-19 targets. The STRING database was analyzed and combined with Cytoscape 3.7.1 software to construct a protein interaction network map to screen the core targets. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was then performed. The core compound, polydatin, was selected and the core targets were analyzed by computer virtual docking using software such as discovery studio autodock tool. In vitro cell models were constructed to experimentally validate the activity of the core compound, polydatin. By computer screening, we identified 9 active ingredients and their corresponding 286 targets from P cuspidatum. A search of the GENECARDS database for COVID-19 yielded 303 core targets. By mapping the active ingredient targets to the disease targets, 27 overlapping targets could be extracted as potential targets for the treatment of COVID-19 with P cuspidatum. In addition, the enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathway on core targets showed that the coronavirus disease, MAPK signaling pathway, NF kappa B signaling pathway, and other signaling pathways were highly enriched. Combined with the degree-high target analysis in the protein interaction network, it was found to be mainly concentrated in the NF-kappaB (NF-κB) signaling pathway, indicating that the NF-κB signaling pathway may be an important pathway for P cuspidatum intervention. In vitro assays showed no effect of 0.1 to 10 μM polydatin on cell viability, but an inhibitory effect on the transcriptional activity of NF-κB-RE. Molecular docking showed stable covalent bonding of polydatin molecules with Il-1β protein at residue leu-26, TNF protein ser-60, residue gly-121, and residue ile-258 of ICAM-1 protein, indicating a stable docking result. The treatment of COVID-19 with P cuspidatum is characterized by multi-component, multi-target, and multi-pathway, which can exert a complex network of regulatory effects through the interaction between different targets, providing a new idea and basis for further exploration of the mechanism of action of P cuspidatum in the treatment of COVID-19.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.