• Anesthesia and analgesia · Feb 2024

    Mechanical Ventilation, Past, Present, and Future.

    • Francesca Rubulotta, Blanch TorraLluisLDepartment of Critical Care, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain.Centro de Investigación Biomédica en Red de Enfermedades Respi, Kuban D Naidoo, AboumarieHatem SolimanHSDepartment of Anaesthetics, Critical Care and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield Hospitals, London, United Kingdom.School of Cardiovascular and Metabolic Medicine and Sciences, King's C, Lufuno R Mathivha, Abdulrahman Y Asiri, Leonardo Sarlabous Uranga, and Sabri Soussi.
    • From the Department of Critical Care Medicine, McGill University, Montreal, Quebec, Canada.
    • Anesth. Analg. 2024 Feb 1; 138 (2): 308325308-325.

    AbstractMechanical ventilation (MV) has played a crucial role in the medical field, particularly in anesthesia and in critical care medicine (CCM) settings. MV has evolved significantly since its inception over 70 years ago and the future promises even more advanced technology. In the past, ventilation was provided manually, intermittently, and it was primarily used for resuscitation or as a last resort for patients with severe respiratory or cardiovascular failure. The earliest MV machines for prolonged ventilatory support and oxygenation were large and cumbersome. They required a significant amount of skills and expertise to operate. These early devices had limited capabilities, battery, power, safety features, alarms, and therefore these often caused harm to patients. Moreover, the physiology of MV was modified when mechanical ventilators moved from negative pressure to positive pressure mechanisms. Monitoring systems were also very limited and therefore the risks related to MV support were difficult to quantify, predict and timely detect for individual patients who were necessarily young with few comorbidities. Technology and devices designed to use tracheostomies versus endotracheal intubation evolved in the last century too and these are currently much more reliable. In the present, positive pressure MV is more sophisticated and widely used for extensive period of time. Modern ventilators use mostly positive pressure systems and are much smaller, more portable than their predecessors, and they are much easier to operate. They can also be programmed to provide different levels of support based on evolving physiological concepts allowing lung-protective ventilation. Monitoring systems are more sophisticated and knowledge related to the physiology of MV is improved. Patients are also more complex and elderly compared to the past. MV experts are informed about risks related to prolonged or aggressive ventilation modalities and settings. One of the most significant advances in MV has been protective lung ventilation, diaphragm protective ventilation including noninvasive ventilation (NIV). Health care professionals are familiar with the use of MV and in many countries, respiratory therapists have been trained for the exclusive purpose of providing safe and professional respiratory support to critically ill patients. Analgo-sedation drugs and techniques are improved, and more sedative drugs are available and this has an impact on recovery, weaning, and overall patients' outcome. Looking toward the future, MV is likely to continue to evolve and improve alongside monitoring techniques and sedatives. There is increasing precision in monitoring global "patient-ventilator" interactions: structure and analysis (asynchrony, desynchrony, etc). One area of development is the use of artificial intelligence (AI) in ventilator technology. AI can be used to monitor patients in real-time, and it can predict when a patient is likely to experience respiratory distress. This allows medical professionals to intervene before a crisis occurs, improving patient outcomes and reducing the need for emergency intervention. This specific area of development is intended as "personalized ventilation." It involves tailoring the ventilator settings to the individual patient, based on their physiology and the specific condition they are being treated for. This approach has the potential to improve patient outcomes by optimizing ventilation and reducing the risk of harm. In conclusion, MV has come a long way since its inception, and it continues to play a critical role in anesthesia and in CCM settings. Advances in technology have made MV safer, more effective, affordable, and more widely available. As technology continues to improve, more advanced and personalized MV will become available, leading to better patients' outcomes and quality of life for those in need.Copyright © 2023 International Anesthesia Research Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.