• J Pain · Jul 2024

    Discovery and preclinical evaluation of a novel inhibitor of FABP5, ART26.12, effective in Oxaliplatin-induced Peripheral Neuropathy.

    • George Warren, Myles Osborn, Christopher Tsantoulas, Ana David-Pereira, Daniel Cohn, Paul Duffy, Linette Ruston, Clare Johnson, Heather Bradshaw, Martin Kaczocha, Iwao Ojima, Andrew Yates, and Saoirse E O'Sullivan.
    • Artelo Biosciences Limited, UK.
    • J Pain. 2024 Jul 1; 25 (7): 104470104470.

    AbstractOxaliplatin-induced peripheral neuropathy (OIPN) is a dose-limiting toxicity characterised by mechanical allodynia and thermal hyperalgesia, without any licensed medications. ART26.12 is a fatty acid-binding protein (FABP) 5 inhibitor with antinociceptive properties, characterised here for the prevention and treatment of OIPN. ART26.12 binds selectively to FABP5 compared to FABP3, FABP4, and FABP7, with minimal off-target liabilities, high oral bioavailability, and a NOAEL of 1,000 mg/kg/day in rats and dogs. In an established preclinical OIPN model, acute oral dosing (25-100 mg/kg) showed a cannabinoid receptor type 1 (CB1)-dependent anti-allodynic effect lasting up to 8 hours (persisting longer than plasma exposure to ART26.12). Antagonists of cannabinoid receptor type 2 (CB2), peroxisome proliferator-activated receptor alpha, and transient receptor potential cation channel subfamily V member 1 (TRPV1) may have also been implicated. Twice daily oral dosing (25 mg/kg bis in die (BID) for 7 days) showed anti-allodynic effects in an established OIPN model without the development of tolerance. In a prevention paradigm, coadministration of ART26.12 (10 and 25 mg/kg BID for 15 days) with oxaliplatin prevented thermal hyperalgesia, mitigated mechanical allodynia, and attenuated OXA-induced weight loss. Multi-scale analyses revealed widespread lipid modulation, particularly among N-acyl amino acids in the spinal cord, including potential analgesic mediators. Additionally, ART26.12 administration led to upregulation of ion channels in the periaqueductal grey, and broad translational upregulation within the plasma proteome. These results show promise that ART26.12 is a safe and well-tolerated candidate for the treatment and prevention of OIPN through lipid modulation. PERSPECTIVE: Inhibition of fatty acid-binding protein 5 (FABP5) is a novel target for reducing pain associated with chemotherapy. ART26.12 is a safe and well-tolerated small molecule FABP5 inhibitor effective at preventing and reducing pain induced with oxaliplatin through lipid modulation and activation of cannabinoid receptors.Copyright © 2024 United States Association for the Study of Pain, Inc. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.