• World Neurosurg · Mar 2024

    Glioblastoma pseudoprogression discrimination using multiparametric magnetic resonance imaging, principal component analysis, supervised and unsupervised machine learning.

    • José Luis Thenier-Villa, Francisco Ramón Martínez-Ricarte, Margarita Figueroa-Vezirian, and Fuat Arikan-Abelló.
    • Department of Neurosurgery, University Hospital Arnau de Vilanova, Lleida, Spain; Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain; Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain. Electronic address: jlthenier.lleida.ics@gencat.cat.
    • World Neurosurg. 2024 Mar 1; 183: e953e962e953-e962.

    BackgroundOne of the most frequent phenomena in the follow-up of glioblastoma is pseudoprogression, present in up to half of cases. The clinical usefulness of discriminating this phenomenon through magnetic resonance imaging and nuclear medicine has not yet been standardized; in this study, we used machine learning on multiparametric magnetic resonance imaging to explore discriminators of this phenomenon.MethodsFor the study, 30 patients diagnosed with IDH wild-type glioblastoma operated on at both study centers in 2011-2020 were selected; 15 patients corresponded to early tumor progression and 15 patients to pseudoprogression. Using unsupervised learning, the number of clusters and tumor segmentation was recorded using gap-stat and k-means method, adjusting to voxel adjacency. In a second phase, a class prediction was carried out with a multinomial logistic regression supervised learning method; the outcome variables were the percentage of assignment, class overrepresentation, and degree of voxel adjacency.ResultsUnsupervised learning of the tumor in its diagnosis shows up to 14 well-differentiated tumor areas. In the supervised learning phase, there is a higher percentage of assigned classes (P < 0.01), less overrepresentation of classes (P < 0.01), and greater adjacency (55% vs. 33%) in cases of true tumor progression compared with pseudoprogression.ConclusionsTrue tumor progression preserves the multidimensional characteristics of the basal tumor at the voxel and region of interest level, resulting in a characteristic differential pattern when supervised learning is used.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.