-
Ont Health Technol Assess Ser · Jan 2005
Biventricular pacing (cardiac resynchronization therapy): an evidence-based analysis.
- Health Quality Ontario.
- Ont Health Technol Assess Ser. 2005 Jan 1;5(13):1-60.
IssueIn 2002, (before the establishment of the Ontario Health Technology Advisory Committee), the Medical Advisory Secretariat conducted a health technology policy assessment on biventricular (BiV) pacing, also called cardiac resynchronization therapy (CRT). The goal of treatment with BiV pacing is to improve cardiac output for people in heart failure (HF) with conduction defect on ECG (wide QRS interval) by synchronizing ventricular contraction. The Medical Advisory Secretariat concluded that there was evidence of short (6 months) and longer-term (12 months) effectiveness in terms of cardiac function and quality of life (QoL). More recently, a hospital submitted an application to the Ontario Health Technology Advisory Committee to review CRT, and the Medical Advisory Secretariat subsequently updated its health technology assessment.BackgroundChronic HF results from any structural or functional cardiac disorder that impairs the ability of the heart to act as a pump. It is estimated that 1% to 5% of the general population (all ages) in Europe have chronic HF. (1;2) About one-half of the patients with HF are women, and about 40% of men and 60% of women with this condition are aged older than 75 years. The incidence (i.e., the number of new cases in a specified period) of chronic HF is age dependent: from 1 to 5 per 1,000 people each year in the total population, to as high as 30 to 40 per 1,000 people each year in those aged 75 years and older. Hence, in an aging society, the prevalence (i.e., the number of people with a given disease or condition at any time) of HF is increasing, despite a reduction in cardiovascular mortality. A recent study revealed 28,702 patients were hospitalized for first-time HF in Ontario between April 1994 and March 1997. (3) Women comprised 51% of the cohort. Eighty-five percent were aged 65 years or older, and 58% were aged 75 years or older. Patients with chronic HF experience shortness of breath, a limited capacity for exercise, high rates of hospitalization and rehospitalization, and die prematurely. (2;4) The New York Heart Association (NYHA) has provided a commonly used functional classification for the severity of HF (2;5): CLASS I: No limitation of physical activity. No symptoms with ordinary exertion.CLASS II: Slight limitations of physical activity. Ordinary activity causes symptoms.CLASS III: Marked limitation of physical activity. Less than ordinary activity causes symptoms. Asymptomatic at rest.CLASS IV: Inability to carry out any physical activity without discomfort. Symptoms at rest.The National Heart, Lung, and Blood Institute estimates that 35% of patients with HF are in functional NYHA class I; 35% are in class II; 25%, class III; and 5%, class IV. (5) Surveys (2) suggest that from 5% to 15% of patients with HF have persistent severe symptoms, and that the remainder of patients with HF is evenly divided between those with mild and moderately severe symptoms. Overall, patients with chronic, stable HF have an annual mortality rate of about 10%. (2) One-third of patients with new-onset HF will die within 6 months of diagnosis. These patients do not survive to enter the pool of those with "chronic" HF. About 60% of patients with incident HF will die within 3 years, and there is limited evidence that the overall prognosis has improved in the last 15 years. To date, the diagnosis and management of chronic HF has concentrated on patients with the clinical syndrome of HF accompanied by severe left ventricular systolic dysfunction. Major changes in treatment have resulted from a better understanding of the pathophysiology of HF and the results of large clinical trials. Treatment for chronic HF includes lifestyle management, drugs, cardiac surgery, or implantable pacemakers and defibrillators. Despite pharmacologic advances, which include diuretics, angiotensin-converting enzyme inhibitors, beta-blockers, spironolactone, and digoxin, many patients remain symptomatic on maximally tolerated doses.The TechnologyOwing to the limitations of drug therapy, cardiac transplantation and device therapies have been used to try to improve QoL and survival of patients with chronic HF. Ventricular pacing is an emerging treatment option for patients with severe HF that does not respond well to medical therapy. Traditionally, indications for pacing include bradyarrhythmia, sick sinus syndrome, atrioventricular block, and other indications, including combined sick sinus syndrome with atrioventricular block and neurocardiogenic syncope. Recently, BiV pacing as a new, adjuvant therapy for patients with chronic HF and mechanical dyssynchrony has been investigated. Ventricular dysfunction is a sign of HF; and, if associated with severe intraventricular conduction delay, it can cause dyssynchronous ventricular contractions resulting in decreased ventricular filling. The therapeutic intent is to activate both ventricles simultaneously, thereby improving the mechanical efficiency of the ventricles. About 30% of patients with chronic HF have intraventricular conduction defects. (6) These conduction abnormalities progress over time and lead to discoordinated contraction of an already hemodynamically compromised ventricle. Intraventricular conduction delay has been associated with clinical instability and an increased risk of death in patients with HF. (7) Hence, BiV pacing, which involves pacing left and right ventricles simultaneously, may provide a more coordinated pattern of ventricular contraction and thereby potentially reduce QRS duration, and intraventricular and interventricular asynchrony. People with advanced chronic HF, a wide QRS complex (i.e., the portion of the electrocardiogram comprising the Q, R, and S waves, together representing ventricular depolarization), low left ventricular ejection fraction and contraction dyssynchrony in a viable myocardium and normal sinus rhythm, are the target patients group for BiV pacing. One-half of all deaths in HF patients are sudden, and the mode of death is arrhythmic in most cases. Internal cardioverter defibrillators (ICDs) combined with BiV pacemakers are therefore being increasingly considered for patients with HF who are at high risk of sudden death. CURRENT IMPLANTATION TECHNIQUE FOR CARDIAC RESYNCHRONIZATION: Conventional dual-chamber pacemakers have only 2 leads: 1 placed in the right atrium and the other in the right ventricle. The technique used for BiV pacemaker implantation also uses right atrial and ventricular pacing leads, in addition to a left ventricle lead advanced through the coronary sinus into a vein that runs along the ventricular free wall. This permits simultaneous pacing of both ventricles to allow resynchronization of the left ventricle septum and free wall. MODE OF OPERATION: Permanent pacing systems consist of an implantable pulse generator that contains a battery and electronic circuitry, together with 1 (single-chamber pacemaker) or 2 (dual-chamber pacemaker) leads. Leads conduct intrinsic atrial or ventricular signals to the sensing circuitry and deliver the pulse generator charge to the myocardium (muscle of the heart). COMPLICATIONS OF BIVENTRICULAR PACEMAKER IMPLANTATION: The complications that may arise when a BiV pacemaker is implanted are similar to those that occur with standard pacemaker implantation, including pneumothorax, perforation of the great vessels or the myocardium, air embolus, infection, bleeding, and arrhythmias. Moreover, left ventricular pacing through the coronary sinus can be associated with rupture of the sinus as another complication. CONCLUSION OF 2003 REVIEW OF BIVENTRICULAR PACEMAKERS BY THE MEDICAL ADVISORY SECRETARIAT: The randomized controlled trials (RCTs) the Medical Advisory Secretariat retrieved analyzed chronic HF patients that were assessed for up to 6 months. Other studies have been prospective, but nonrandomized, not double-blinded, uncontrolled and/or have had a limited or uncalculated sample size. Short-term studies have focused on acute hemodynamic analyses. The authors of the RCTs reported improved cardiac function and QoL up to 6 months after BiV pacemaker implantation; therefore, there is level 1 evidence that patients in ventricular dyssynchrony who remain symptomatic after medication might benefit from this technology. Based on evidence made available to the Medical Advisory Secretariat by a manufacturer, (8) it appears that these 6-month improvements are maintained at 12-month follow-up. To date, however, there is insufficient evidence to support the routine use of combined ICD/BiV devices in patients with chronic HF with prolonged QRS intervals. SUMMARY OF UPDATED FINDINGS SINCE THE 2003 REVIEW: Since the Medical Advisory Secretariat's review in 2003 of biventricular pacemakers, 2 large RCTs have been published: COMPANION (9) and CARE-HF. (10) The characteristics of each trial are shown in Table 1. The COMPANION trial had a number of major methodological limitations compared with the CARE-HF trial. Table 1:Characteristics of the COMPANION and CARE-HF Trials*COMPANION, 2004CARE-HF, 2005Optimal Therapy vs. BiV Pacing vs. BiV Pacing/ICD†Optimal Therapy vs. BiV PacingPopulationNew York Heart Association class III/IV heart failureEF† ≤ 0.35QRS† ≥ 120 msN1,520(optimal therapy, n = 308; BiV pacing, n = 617; BiV pacing/ICD, n = 595)813Follow-up (months)Median, 16Mean, 29Comment- Definition of "hospitalization" in primary outcome changed 3 times during trial w/o documentation in protocol and FDA† not notified (dominant outcome for composite endpoint).- Dropouts/withdrawals/crossovers not clearly described.- Study terminated early.- No direct comparison between BiV pacing vs. BiV pacing/ICD.- High number of patients withdrew from optimal therapy to device arms.- Not blinded.Not blinded*COMPANION; (9) CARE-HF. (ABSTRACT TRUNCATED)
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.