-
Observational Study
Assessing the precision of artificial intelligence in emergency department triage decisions: Insights from a study with ChatGPT.
- Sinan Paslı, Abdul Samet Şahin, Muhammet Fatih Beşer, Hazal Topçuoğlu, Metin Yadigaroğlu, and Melih İmamoğlu.
- Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey. Electronic address: drsinanpasli@gmail.com.
- Am J Emerg Med. 2024 Apr 1; 78: 170175170-175.
BackgroundThe rise in emergency department presentations globally poses challenges for efficient patient management. To address this, various strategies aim to expedite patient management. Artificial intelligence's (AI) consistent performance and rapid data interpretation extend its healthcare applications, especially in emergencies. The introduction of a robust AI tool like ChatGPT, based on GPT-4 developed by OpenAI, can benefit patients and healthcare professionals by improving the speed and accuracy of resource allocation. This study examines ChatGPT's capability to predict triage outcomes based on local emergency department rules.MethodsThis study is a single-center prospective observational study. The study population consists of all patients who presented to the emergency department with any symptoms and agreed to participate. The study was conducted on three non-consecutive days for a total of 72 h. Patients' chief complaints, vital parameters, medical history and the area to which they were directed by the triage team in the emergency department were recorded. Concurrently, an emergency medicine physician inputted the same data into previously trained GPT-4, according to local rules. According to this data, the triage decisions made by GPT-4 were recorded. In the same process, an emergency medicine specialist determined where the patient should be directed based on the data collected, and this decision was considered the gold standard. Accuracy rates and reliability for directing patients to specific areas by the triage team and GPT-4 were evaluated using Cohen's kappa test. Furthermore, the accuracy of the patient triage process performed by the triage team and GPT-4 was assessed by receiver operating characteristic (ROC) analysis. Statistical analysis considered a value of p < 0.05 as significant.ResultsThe study was carried out on 758 patients. Among the participants, 416 (54.9%) were male and 342 (45.1%) were female. Evaluating the primary endpoints of our study - the agreement between the decisions of the triage team, GPT-4 decisions in emergency department triage, and the gold standard - we observed almost perfect agreement both between the triage team and the gold standard and between GPT-4 and the gold standard (Cohen's Kappa 0.893 and 0.899, respectively; p < 0.001 for each).ConclusionOur findings suggest GPT-4 possess outstanding predictive skills in triaging patients in an emergency setting. GPT-4 can serve as an effective tool to support the triage process.Copyright © 2024 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.