• J Clin Monit Comput · Aug 2024

    Observational Study

    Short-term mild hyperventilation on intracranial pressure, cerebral autoregulation, and oxygenation in acute brain injury patients: a prospective observational study.

    • Danilo Cardim, Alberto Giardina, Pietro Ciliberti, Denise Battaglini, Andrea Berardino, Antonio Uccelli, Marek Czosnyka, Luca Roccatagliata, Basil Matta, Nicolo Patroniti, RoccoPatricia R MPRMLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil., and Chiara Robba.
    • Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.
    • J Clin Monit Comput. 2024 Aug 1; 38 (4): 753762753-762.

    AbstractCurrent guidelines suggest a target of partial pressure of carbon dioxide (PaCO2) of 32-35 mmHg (mild hypocapnia) as tier 2 for the management of intracranial hypertension. However, the effects of mild hyperventilation on cerebrovascular dynamics are not completely elucidated. The aim of this study is to evaluate the changes of intracranial pressure (ICP), cerebral autoregulation (measured through pressure reactivity index, PRx), and regional cerebral oxygenation (rSO2) parameters before and after induction of mild hyperventilation. Single center, observational study including patients with acute brain injury (ABI) admitted to the intensive care unit undergoing multimodal neuromonitoring and requiring titration of PaCO2 values to mild hypocapnia as tier 2 for the management of intracranial hypertension. Twenty-five patients were included in this study (40% female), median age 64.7 years (Interquartile Range, IQR = 45.9-73.2). Median Glasgow Coma Scale was 6 (IQR = 3-11). After mild hyperventilation, PaCO2 values decreased (from 42 (39-44) to 34 (32-34) mmHg, p < 0.0001), ICP and PRx significantly decreased (from 25.4 (24.1-26.4) to 17.5 (16-21.2) mmHg, p < 0.0001, and from 0.32 (0.1-0.52) to 0.12 (-0.03-0.23), p < 0.0001). rSO2 was statistically but not clinically significantly reduced (from 60% (56-64) to 59% (54-61), p < 0.0001), but the arterial component of rSO2 (ΔO2Hbi, changes in concentration of oxygenated hemoglobin of the total rSO2) decreased from 3.83 (3-6.2) μM.cm to 1.6 (0.5-3.1) μM.cm, p = 0.0001. Mild hyperventilation can reduce ICP and improve cerebral autoregulation, with minimal clinical effects on cerebral oxygenation. However, the arterial component of rSO2 was importantly reduced. Multimodal neuromonitoring is essential when titrating PaCO2 values for ICP management.© 2024. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.