• Postgraduate medicine · Jan 2024

    Machine learning-based risk prediction of hypoxemia for outpatients undergoing sedation colonoscopy: a practical clinical tool.

    • Wei Lu, Yulan Tong, Xiuxiu Zhao, Yue Feng, Yi Zhong, Zhaojing Fang, Chen Chen, Kaizong Huang, Yanna Si, and Jianjun Zou.
    • School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
    • Postgrad Med. 2024 Jan 1; 136 (1): 849484-94.

    ObjectivesHypoxemia as a common complication in colonoscopy under sedation and may result in serious consequences. Unfortunately, a hypoxemia prediction model for outpatient colonoscopy has not been developed. Consequently, the objective of our study was to develop a practical and accurate model to predict the risk of hypoxemia in outpatient colonoscopy under sedation.MethodsIn this study, we included patients who received colonoscopy with anesthesia in Nanjing First Hospital from July to September 2021. Risk factors were selected through the least absolute shrinkage and selection operator (LASSO). Prediction models based on logistic regression (LR), random forest classifier (RFC), extreme gradient boosting (XGBoost), support vector machine (SVM), and stacking classifier (SCLF) model were implemented and assessed by standard metrics such as the area under the receiver operating characteristic curve (AUROC), sensitivity and specificity. Then choose the best model to develop an online tool for clinical use.ResultsWe ultimately included 839 patients. After LASSO, body mass index (BMI) (coefficient = 0.36), obstructive sleep apnea-hypopnea syndrome (OSAHS) (coefficient = 1.32), basal oxygen saturation (coefficient = -0.14), and remifentanil dosage (coefficient = 0.04) were independent risk factors for hypoxemia. The XGBoost model with an AUROC of 0.913 showed the best performance among the five models.ConclusionOur study selected the XGBoost as the first model especially for colonoscopy, with over 95% accuracy and excellent specificity. The XGBoost includes four variables that can be quickly obtained. Moreover, an online prediction practical tool has been provided, which helps screen high-risk outpatients with hypoxemia swiftly and conveniently.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…