-
Pediatr Crit Care Me · Jun 2024
Comparative StudyComparing the Quality of Domain-Specific Versus General Language Models for Artificial Intelligence-Generated Differential Diagnoses in PICU Patients.
- Alireza Akhondi-Asl, Youyang Yang, Matthew Luchette, Jeffrey P Burns, Nilesh M Mehta, and Alon Geva.
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA.
- Pediatr Crit Care Me. 2024 Jun 1; 25 (6): e273e282e273-e282.
ObjectivesGenerative language models (LMs) are being evaluated in a variety of tasks in healthcare, but pediatric critical care studies are scant. Our objective was to evaluate the utility of generative LMs in the pediatric critical care setting and to determine whether domain-adapted LMs can outperform much larger general-domain LMs in generating a differential diagnosis from the admission notes of PICU patients.DesignSingle-center retrospective cohort study.SettingQuaternary 40-bed PICU.PatientsNotes from all patients admitted to the PICU between January 2012 and April 2023 were used for model development. One hundred thirty randomly selected admission notes were used for evaluation.InterventionsNone.Measurements And Main ResultsFive experts in critical care used a 5-point Likert scale to independently evaluate the overall quality of differential diagnoses: 1) written by the clinician in the original notes, 2) generated by two general LMs (BioGPT-Large and LLaMa-65B), and 3) generated by two fine-tuned models (fine-tuned BioGPT-Large and fine-tuned LLaMa-7B). Differences among differential diagnoses were compared using mixed methods regression models. We used 1,916,538 notes from 32,454 unique patients for model development and validation. The mean quality scores of the differential diagnoses generated by the clinicians and fine-tuned LLaMa-7B, the best-performing LM, were 3.43 and 2.88, respectively (absolute difference 0.54 units [95% CI, 0.37-0.72], p < 0.001). Fine-tuned LLaMa-7B performed better than LLaMa-65B (absolute difference 0.23 unit [95% CI, 0.06-0.41], p = 0.009) and BioGPT-Large (absolute difference 0.86 unit [95% CI, 0.69-1.0], p < 0.001). The differential diagnosis generated by clinicians and fine-tuned LLaMa-7B were ranked as the highest quality in 144 (55%) and 74 cases (29%), respectively.ConclusionsA smaller LM fine-tuned using notes of PICU patients outperformed much larger models trained on general-domain data. Currently, LMs remain inferior but may serve as an adjunct to human clinicians in real-world tasks using real-world data.Copyright © 2024 by the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.