-
- Raymond J Langley, Ephraim L Tsalik, Jennifer C van Velkinburgh, Seth W Glickman, Brandon J Rice, Chunping Wang, Bo Chen, Lawrence Carin, Arturo Suarez, Robert P Mohney, Debra H Freeman, Mu Wang, Jinsam You, Jacob Wulff, J Will Thompson, M Arthur Moseley, Stephanie Reisinger, Brian T Edmonds, Brian Grinnell, David R Nelson, Darrell L Dinwiddie, Neil A Miller, Carol J Saunders, Sarah S Soden, Angela J Rogers, Lee Gazourian, Laura E Fredenburgh, Anthony F Massaro, Rebecca M Baron, Augustine M K Choi, G Ralph Corey, Geoffrey S Ginsburg, Charles B Cairns, Ronny M Otero, Vance G Fowler, Emanuel P Rivers, Christopher W Woods, and Stephen F Kingsmore.
- National Center for Genome Resources, Santa Fe, NM 87505, USA.
- Sci Transl Med. 2013 Jul 24;5(195):195ra95.
AbstractSepsis is a common cause of death, but outcomes in individual patients are difficult to predict. Elucidating the molecular processes that differ between sepsis patients who survive and those who die may permit more appropriate treatments to be deployed. We examined the clinical features and the plasma metabolome and proteome of patients with and without community-acquired sepsis, upon their arrival at hospital emergency departments and 24 hours later. The metabolomes and proteomes of patients at hospital admittance who would ultimately die differed markedly from those of patients who would survive. The different profiles of proteins and metabolites clustered into the following groups: fatty acid transport and β-oxidation, gluconeogenesis, and the citric acid cycle. They differed consistently among several sets of patients, and diverged more as death approached. In contrast, the metabolomes and proteomes of surviving patients with mild sepsis did not differ from survivors with severe sepsis or septic shock. An algorithm derived from clinical features together with measurements of five metabolites predicted patient survival. This algorithm may help to guide the treatment of individual patients with sepsis.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.