• Curr Med Res Opin · Mar 2024

    Review

    Risk prediction models of mortality after hip fracture surgery in older individuals: a systematic review.

    • Ying Sun, Yanhui Liu, Yaning Zhu, Ruzhen Luo, Yiwei Luo, Shanshan Wang, and Zihang Feng.
    • School of Nursing, Tianjin University of Chinese Medicine, Tianjin, China.
    • Curr Med Res Opin. 2024 Mar 1; 40 (3): 523535523-535.

    ObjectiveThis study aimed to critically assess existing risk prediction models for postoperative mortality in older individuals with hip fractures, with the objective of offering substantive insights for their clinical application.DesignA comprehensive search was conducted across prominent databases, including PubMed, Embase, Cochrane Library, SinoMed, CNKI, VIP, and Wanfang, spanning original articles in both Chinese and English up until 1 December 2023. Two researchers independently extracted pertinent research characteristics, such as predictors, model performance metrics, and modeling methodologies. Additionally, the bias risk and applicability of the incorporated risk prediction models were systematically evaluated using the Prediction Model Risk of Bias Assessment Tool (PROBAST).ResultsWithin the purview of this investigation, a total of 21 studies were identified, constituting 21 original risk prediction models. The discriminatory capacity of the included risk prediction models, as denoted by the minimum and maximum areas under the subject operating characteristic curve, ranged from 0.710 to 0.964. Noteworthy predictors, recurrent across various models, included age, sex, comorbidities, and nutritional status. However, among the models assessed through the PROBAST framework, only one was deemed to exhibit a low risk of bias. Beyond this assessment, the principal limitations observed in risk prediction models pertain to deficiencies in data analysis, encompassing insufficient sample size and suboptimal handling of missing data.ConclusionSubsequent research endeavors should adopt more stringent experimental designs and employ advanced statistical methodologies in the construction of risk prediction models. Moreover, large-scale external validation studies are warranted to rigorously assess the generalizability and clinical utility of existing models, thereby enhancing their relevance as valuable clinical references.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.