-
- Tao Sun, Xiaoyang Chen, Hui Yan, and Jun Liu.
- Department of Hematology and Oncology Laboratory, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China.
- Medicine (Baltimore). 2024 Feb 16; 103 (7): e37085e37085.
AbstractThis study seeks to understand the causal association between serum metabolites and different lung cancer types, an area yet to be extensively studied. We Used a two-sample Mendelian randomization (TSMR) approach, utilizing 486 blood metabolites as exposures and 3 distinct lung cancer types genome-wide association studies datasets as outcomes. We employed inverse variance weighting, MR-Egger, weighted median, simple mode, and weighted mode to estimate causal effects. We performed sensitivity analyses using Cochran Q test, MR-Egger intercept test, and MR-pleiotropy residual sum and outlier (MR-PRESSO). Linkage disequilibrium score (LDSC) analysis was conducted on the selected metabolites, and common confounding single nucleotide polymorphisms were eliminated using the human genotype-phenotype association Database. Metabolic pathway analysis was performed with MetaboAnalyst 5.0 software. Subsequently, a multivariate Mendelian randomization analysis was conducted to ascertain independent risk exposures. Our findings suggest independent risk factors for specific types of lung cancer: 7-methylxanthine and isoleucine for lung adenocarcinoma, cysteine and 1-arachidonoylglycerophosphocholine are identified as independent protective and risk factors for squamous lung cancer. Undecanoate (11:0) with Linoleate (18:2n6) showed a protective effect for small cell lung cancer. Additionally, 11 metabolic pathways were associated with lung cancer. This novel perspective offers a multidimensional understanding of lung cancer phenotypes, providing valuable guidance for identifying and screening of diverse lung cancer phenotypes.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.