-
- Hao Wei Chung, Ju-Chieh Chen, Hsiu-Lin Chen, Fang-Yu Ko, Shinn-Ying Ho, and Taiwan Premature Infant Follow-up Network.
- Division of Neonatology, Department of Pediatrics, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Bmc Med. 2024 Feb 16; 22 (1): 6868.
BackgroundFollow-up visits for very preterm infants (VPI) after hospital discharge is crucial for their neurodevelopmental trajectories, but ensuring their attendance before 12 months corrected age (CA) remains a challenge. Current prediction models focus on future outcomes at discharge, but post-discharge data may enhance predictions of neurodevelopmental trajectories due to brain plasticity. Few studies in this field have utilized machine learning models to achieve this potential benefit with transparency, explainability, and transportability.MethodsWe developed four prediction models for cognitive or motor function at 24 months CA separately at each follow-up visits, two for the 6-month and two for the 12-month CA visits, using hospitalized and follow-up data of VPI from the Taiwan Premature Infant Follow-up Network from 2010 to 2017. Regression models were employed at 6 months CA, defined as a decline in The Bayley Scales of Infant Development 3rd edition (BSIDIII) composite score > 1 SD between 6- and 24-month CA. The delay models were developed at 12 months CA, defined as a BSIDIII composite score < 85 at 24 months CA. We used an evolutionary-derived machine learning method (EL-NDI) to develop models and compared them to those built by lasso regression, random forest, and support vector machine.ResultsOne thousand two hundred forty-four VPI were in the developmental set and the two validation cohorts had 763 and 1347 VPI, respectively. EL-NDI used only 4-10 variables, while the others required 29 or more variables to achieve similar performance. For models at 6 months CA, the area under the receiver operating curve (AUC) of EL-NDI were 0.76-0.81(95% CI, 0.73-0.83) for cognitive regress with 4 variables and 0.79-0.83 (95% CI, 0.76-0.86) for motor regress with 4 variables. For models at 12 months CA, the AUC of EL-NDI were 0.75-0.78 (95% CI, 0.72-0.82) for cognitive delay with 10 variables and 0.73-0.82 (95% CI, 0.72-0.85) for motor delay with 4 variables.ConclusionsOur EL-NDI demonstrated good performance using simpler, transparent, explainable models for clinical purpose. Implementing these models for VPI during follow-up visits may facilitate more informed discussions between parents and physicians and identify high-risk infants more effectively for early intervention.© 2024. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.