-
- Chiao-Lin Hsu, Pin-Chieh Wu, Fu-Zong Wu, and Hsien-Chung Yu.
- Health Management Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
- Ann. Med. 2024 Dec 1; 56 (1): 23173482317348.
BackgroundLean individuals with non-alcohol fatty liver disease (NAFLD) often have normal body size but abnormal visceral fat. Therefore, an alternative to body mass index should be considered for prediction of lean-NAFLD. This study aimed to use representative visceral fat links with other laboratory parameters using the least absolute shrinkage and selection operator (LASSO) method to construct a predictive model for lean-NAFLD.MethodsThis retrospective cross-sectional analysis enrolled 2325 subjects with BMI < 24 kg/m2 from medical records of 51,271 examinees who underwent a routine health check-up. They were randomly divided into training and validation cohorts at a ratio of 1:1. The LASSO-derived prediction model used LASSO regression to select 23 clinical and laboratory factors. The discrimination and calibration abilities were evaluated using the Hosmer-Lemeshow test and calibration curves. The performance of the LASSO model was compared with the fatty liver index (FLI) model.ResultsThe LASSO-derived model included four variables-visceral fat, triglyceride levels, HDL-C-C levels, and waist hip ratio-and demonstrated superior performance in predicting lean-NAFLD with high discriminatory ability (AUC, 0.8416; 95% CI: 0.811-0.872) that was comparable with the FLI model. Using a cut-off of 0.1484, moderate sensitivity (75.69%) and specificity (79.86%), as well as high negative predictive value (95.9%), were achieved in the LASSO model. In addition, with normal WC subgroup analysis, the LASSO model exhibits a trend of higher accuracy compared to FLI (cut-off 15.45).ConclusionsWe developed a LASSO-derived predictive model with the potential for use as an alternative tool for predicting lean-NAFLD in clinical settings.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.