• Medicine · Feb 2024

    Curcumin suppresses metastasis of triple-negative breast cancer cells by modulating EMT signaling pathways: An integrated study of bioinformatics analysis.

    • Ze Chen, Pinjun Lu, Menghan Li, Qing Zhang, Tao He, and Lin Gan.
    • Institute of Medical Cancer, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
    • Medicine (Baltimore). 2024 Feb 23; 103 (8): e37264e37264.

    AbstractThis study aimed to use bioinformatics approaches for predicting the anticancer mechanisms of curcumin on triple-negative breast cancer (TNBC) and to verify these predictions through in vitro experiments. Initially, the Cell Counting Kit-8 (CCK8) assay was employed to rigorously investigate the influence of curcumin on the proliferative capacity of TNBC cells. Subsequently, flow cytometry was employed to meticulously assess the impact of curcumin on cellular apoptosis and the cell cycle regulation. Transwell assays were employed to meticulously evaluate the effect of curcumin on the motility of TNBC cells. RNA sequencing was conducted, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of differentially expressed genes, aiming to elucidate the potential anticancer mechanisms underlying curcumin's effects. To thoroughly elucidate the interactions among multiple proteins, we constructed a protein-protein interaction (PPI) network. Finally, the expression levels of several key proteins, including fibronectin, mTOR, β-Catenin, p-Akt, Akt, N-Cadherin, p-S6, and S6, were assessed using the western blot. The CCK8 assay results showed that curcumin significantly inhibited the proliferation of Hs578T and MDA-MB-231 cells. Flow cytometry results showed that curcumin induced apoptosis in these cells and arrested the cell cycle at the G2/M phase. Additionally, Transwell assay results showed that curcumin effectively reduced the motility of Hs578T and MDA-MB-231 cells. Enrichment analysis of RNA sequencing data showed that the mechanism of action of curcumin was significantly associated with signaling pathways such as pathways in cancer, focal adhesion, and PI3K-Akt signaling pathways. Subsequently, we constructed a protein-protein interaction network to elucidate the interactions among multiple proteins. Finally, Western blotting analysis showed that curcumin significantly decreased the expression levels of key proteins including Fibronectin, mTOR, β-Catenin, p-Akt, Akt, N-Cadherin, p-S6, and S6. Curcumin exhibits its therapeutic potential in TNBC by modulating multiple signaling pathways. It may inhibit the epithelial-mesenchymal transition process by downregulating the expression of proteins involved in the mTOR and PI3K-Akt signaling pathways, thereby suppressing the motility of TNBC cells. These findings provide experimental evidence for considering curcumin as a potential therapeutic strategy in the treatment of TNBC.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.