• Medicine · Feb 2024

    Early prediction of gallstone disease with a machine learning-based method from bioimpedance and laboratory data.

    • İrfan Esen, Hilal Arslan, Selin Aktürk Esen, Mervenur Gülşen, Nimet Kültekin, and Oğuzhan Özdemir.
    • Yüksek İhtisas University, Faculty of Medicine Department of Internal Medicine, Ankara, Turkey.
    • Medicine (Baltimore). 2024 Feb 23; 103 (8): e37258e37258.

    AbstractGallstone disease (GD) is a common gastrointestinal disease. Although traditional diagnostic techniques, such as ultrasonography, CT, and MRI, detect gallstones, they have some limitations, including high cost and potential inaccuracies in certain populations. This study proposes a machine learning-based prediction model for gallstone disease using bioimpedance and laboratory data. A dataset of 319 samples, comprising161 gallstone patients and 158 healthy controls, was curated. The dataset comprised 38 attributes of the participants, including age, weight, height, blood test results, and bioimpedance data, and it contributed to the literature on gallstones as a new dataset. State-of-the-art machine learning techniques were performed on the dataset to detect gallstones. The experimental results showed that vitamin D, C-reactive protein (CRP) level, total body water, and lean mass are crucial features, and the gradient boosting technique achieved the highest accuracy (85.42%) in predicting gallstones. The proposed technique offers a viable alternative to conventional imaging techniques for early prediction of gallstone disease.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.