• World Neurosurg · May 2024

    Prediction of hematoma expansion in intracerebral hemorrhage in 24 hours by machine learning algorithm.

    • Chaonan Du, Yan Li, Mingfei Yang, Qingfang Ma, Sikai Ge, and Chiyuan Ma.
    • Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
    • World Neurosurg. 2024 May 1; 185: e475e483e475-e483.

    ObjectiveThe significance of noncontrast computer tomography (CT) image markers in predicting hematoma expansion (HE) following intracerebral hemorrhage (ICH) within different time intervals in the initial 24 hours after onset may be uncertain. Hence, our objective was to examine the predictive value of clinical factors and CT image markers for HE within the initial 24 hours using machine learning algorithms.MethodsFour machine learning algorithms, including extreme gradient boosting (XGBoost), support vector machine, random forest, and logistic regression, were employed to assess the predictive efficacy of HE within every 6-hour interval during the first 24 hours post-ICH. The area under the receiver operating characteristic curves was utilized to appraise predictive performance across various time periods within the initial 24 hours.ResultsA total of 604 patients were included, with 326 being male, and 112 experiencing hematoma expansion (HE). The findings from machine learning algorithms revealed that computed tomography (CT) image markers, baseline hematoma volume, and other factors could accurately predict HE. Among these algorithms, XGBoost demonstrated the most robust predictive model results. XGBoost's accuracy at different time intervals was 0.89, 0.82, 0.87, and 0.94, accompanied by F1-scores of 0.89, 0.80, 0.87, and 0.93, respectively. The corresponding area under the curve was 0.96, affirming the precision of the predictive capability.ConclusionsComputed tomography (CT) imaging markers and clinical factors could effectively predict HE within the initial 24 hours across various time periods by machine learning algorithms. In the expansive landscape of big data and multimodal cerebral hemorrhage, machine learning held significant potential within the realm of neuroscience.Copyright © 2024 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.