• Experimental neurology · Jan 2012

    Comparative Study

    Comparative effects of glibenclamide and riluzole in a rat model of severe cervical spinal cord injury.

    • J Marc Simard, Orest Tsymbalyuk, Kaspar Keledjian, Alexander Ivanov, Svetlana Ivanova, and Volodymyr Gerzanich.
    • Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201-1595, USA. msimard@smail.umaryland.edu
    • Exp. Neurol. 2012 Jan 1;233(1):566-74.

    AbstractBoth glibenclamide and riluzole reduce necrosis and improve outcome in rat models of spinal cord injury (SCI). In SCI, gene suppression experiments show that newly upregulated sulfonylurea receptor 1 (Sur1)-regulated NC(Ca-ATP) channels in microvascular endothelial cells are responsible for "persistent sodium currents" that cause capillary fragmentation and "progressive hemorrhagic necrosis". Glibenclamide is a potent blocker of Sur1-regulated NC(Ca-ATP) channels (IC(50), 6-48 nM). Riluzole is a pleotropic drug that blocks "persistent sodium currents" in neurons, but in SCI, its molecular mechanism of action is uncertain. We hypothesized that riluzole might block the putative pore-forming subunits of Sur1-regulated NC(Ca-ATP) channels, Trpm4. In patch clamp experiments, riluzole blocked Sur1-regulated NC(Ca-ATP) channels in endothelial cells and heterologously expressed Trpm4 (IC(50), 31 μM). Using a rat model of cervical SCI associated with high mortality, we compared the effects of glibenclamide and riluzole administered beginning at 3h and continuing for 7 days after impact. During the acute phase, both drugs reduced capillary fragmentation and progressive hemorrhagic necrosis, and both prevented death. At 6 weeks, modified (unilateral) Basso, Beattie, Bresnahan locomotor scores were similar, but measures of complex function (grip strength, rearing, accelerating rotarod) and tissue sparing were significantly better with glibenclamide than with riluzole. We conclude that both drugs act similarly, glibenclamide on the regulatory subunit, and riluzole on the putative pore-forming subunit of the Sur1-regulated NC(Ca-ATP) channel. Differences in specificity, dose-limiting potency, or in spectrum of action may account for the apparent superiority of glibenclamide over riluzole in this model of severe SCI.Copyright © 2011 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.