• Am. J. Respir. Crit. Care Med. · Sep 2024

    Epigenome-Wide Association Studies of COPD and Lung Function: A Systematic Review.

    • Sandra Casas-Recasens, Raisa Cassim, Núria Mendoza, Alvar Agusti, Caroline Lodge, Shuai Li, Dinh Bui, David Martino, Shyamali C Dharmage, and Rosa Faner.
    • Fundació Clinic Recerca Biomedica-Institut d'Investigacions Biomediques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona, Spain.
    • Am. J. Respir. Crit. Care Med. 2024 Sep 15; 210 (6): 766778766-778.

    AbstractRationale: Chronic obstructive pulmonary disease (COPD) results from gene-environment interactions over the lifetime. These interactions are captured by epigenetic changes, such as DNA methylation. Objectives: To systematically review the evidence form epigenome-wide association studies related to COPD and lung function. Methods: A systematic literature search performed on PubMed, Embase, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases identified 1,947 articles that investigated epigenetic changes associated with COPD and/or lung function; 17 of them met our eligibility criteria, from which data were manually extracted. Differentially methylated positions (DMPs) and/or annotated genes were considered replicated if identified by two or more studies with a P < 1 × 10-4. Measurements and Main Results: Ten studies profiled DNA methylation changes in blood and seven in respiratory samples, including surgically resected lung tissue (n = 3), small airway epithelial brushings (n = 2), BAL (n = 1), and sputum (n = 1). Main results showed: 1) high variability in study design, covariates, and effect sizes, which prevented a formal meta-analysis; 2) in blood samples, 51 DMPs were replicated in relation to lung function and 12 related to COPD; 3) in respiratory samples, 42 DMPs were replicated in relation to COPD but none in relation to lung function; and 4) in COPD versus control studies, 123 genes (2.6% of total) were shared between one or more blood and one or more respiratory samples and associated with chronic inflammation, ion transport, and coagulation. Conclusions: There is high heterogeneity across published COPD and/or lung function epigenome-wide association studies. A few genes (n = 123; 2.6%) were replicated in blood and respiratory samples, suggesting that blood can recapitulate some changes in respiratory tissues. These findings have implications for future research. Systematic Review [protocol] registered with Open Science Framework (OSF).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…