-
- Ahmad Rujoie, Ole Kæseler Andersen, and Ken Steffen Frahm.
- Integrative Neuroscience Group, Center for Neuroplasticity and Pain (CNAP), Department of Health Science & Technology, Aalborg University, Aalborg, Denmark.
- Eur J Pain. 2024 Sep 1; 28 (8): 132013291320-1329.
BackgroundCutaneous laser stimulation has commonly been employed to investigate the thermal properties of the nociceptive system. The aim of this study was to investigate how a temperature-controlled laser system improves the assessment of directional discrimination in the nociceptive system.MethodsIn total, twenty healthy volunteers participated in this study. To determine the directional discrimination threshold (stimulation length 50% correct, expressed in mm), thermal stimuli were delivered using a diode laser and the laser beam was perpendicularly displaced across the skin to give a linear stimulation in four different directions (distal, proximal, lateral and medial) and displacement lengths (3 for lateral-medial and 5 for distal-proximal). Two temperature control modes were used in the stimulation system, open-loop and closed-loop control. The subjects had to report the perceived stimulus direction, the degree of certainty regarding the perceived direction and the intensity of the perceived stimulus (0-10 numerical rating scale, 3: pain threshold).ResultsDuring closed-loop control, the orientation of stimuli was discriminated significantly more accurately than during open-loop control. During closed-loop control, the directional discrimination threshold was 31.9 and 26.1 mm for distal-proximal and lateral-medial directed stimuli, respectively. A numerical rating scale was significantly higher for the lateral/medial directions. Moreover, the variability of the discrimination threshold is reduced in the closed-loop control system.ConclusionsThe findings show that discrimination ability is better in the lateral-medial directions compared to the distal-proximal directions. This study indicates that using a system enabling closed-loop temperature control, allows more robust probing of the temporo-spatial mechanisms in the nociceptive system.SignificanceThis study shows that a newly developed temperature-controlled laser stimulation system enhances the possibilities to investigate the nociceptive temporo-spatial integration, as shown by a less variable directional discrimination threshold. The results also show that different orthogonal directions are discriminated differently. This new method allows a better investigation of the combined temporal and spatial mechanisms in the nociceptive system.© 2024 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation ‐ EFIC ®.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.