• Am. J. Respir. Crit. Care Med. · Aug 2024

    Deep Learning-based Segmentation of CT Scans Predicts Disease Progression and Mortality in IPF.

    • Muhunthan Thillai, Justin M Oldham, Alessandro Ruggiero, Fahdi Kanavati, Tom McLellan, Gauri Saini, Simon R Johnson, Francois-Xavier Ble, Adnan Azim, Kristoffer Ostridge, Adam Platt, Maria Belvisi, Toby M Maher, and Philip L Molyneaux.
    • Royal Papworth Hospital, Cambridge, United Kingdom.
    • Am. J. Respir. Crit. Care Med. 2024 Aug 15; 210 (4): 465472465-472.

    AbstractRationale: Despite evidence demonstrating a prognostic role for computed tomography (CT) scans in idiopathic pulmonary fibrosis (IPF), image-based biomarkers are not routinely used in clinical practice or trials. Objectives: To develop automated imaging biomarkers using deep learning-based segmentation of CT scans. Methods: We developed segmentation processes for four anatomical biomarkers, which were applied to a unique cohort of treatment-naive patients with IPF enrolled in the PROFILE (Prospective Observation of Fibrosis in the Lung Clinical Endpoints) study and tested against a further United Kingdom cohort. The relationships among CT biomarkers, lung function, disease progression, and mortality were assessed. Measurements and Main Results: Data from 446 PROFILE patients were analyzed. Median follow-up duration was 39.1 months (interquartile range, 18.1-66.4 mo), with a cumulative incidence of death of 277 (62.1%) over 5 years. Segmentation was successful on 97.8% of all scans, across multiple imaging vendors, at slice thicknesses of 0.5-5 mm. Of four segmentations, lung volume showed the strongest correlation with FVC (r = 0.82; P < 0.001). Lung, vascular, and fibrosis volumes were consistently associated across cohorts with differential 5-year survival, which persisted after adjustment for baseline gender, age, and physiology score. Lower lung volume (hazard ratio [HR], 0.98 [95% confidence interval (CI), 0.96-0.99]; P = 0.001), increased vascular volume (HR, 1.30 [95% CI, 1.12-1.51]; P = 0.001), and increased fibrosis volume (HR, 1.17 [95% CI, 1.12-1.22]; P < 0.001) were associated with reduced 2-year progression-free survival in the pooled PROFILE cohort. Longitudinally, decreasing lung volume (HR, 3.41 [95% CI, 1.36-8.54]; P = 0.009) and increasing fibrosis volume (HR, 2.23 [95% CI, 1.22-4.08]; P = 0.009) were associated with differential survival. Conclusions: Automated models can rapidly segment IPF CT scans, providing prognostic near and long-term information, which could be used in routine clinical practice or as key trial endpoints.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.