-
- Guangqian Ding, Ailing Kuang, Zhongbo Zhou, Youping Lin, and Yi Chen.
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Guangdong Province, China; The Key Laboratory for Prevention and Treatment of Critical Illness in Dongguan City, Guangdong Province, China.
- Am J Emerg Med. 2024 May 1; 79: 172182172-182.
BackgroundThe survivors of cardiac arrest experienced vary extent of hypoxic ischemic brain injury causing mortality and long-term neurologic disability. However, there is still a need to develop robust and reliable prognostic models that can accurately predict these outcomes.ObjectivesTo establish reliable models for predicting 90-day neurological function and mortality in adult ICU patients recovering from cardiac arrest.MethodsWe enrolled patients who had recovered from cardiac arrest at Binhaiwan Central Hospital of Dongguan, from January 2018 to July 2021. The study's primary outcome was 90-day neurological function, assessed and divided into two categories using the Cerebral Performance Category (CPC) scale: either good (CPC 1-2) or poor (CPC 3-5). The secondary outcome was 90-day mortality. We analyzed the relationships between risk factors and outcomes individually. A total of four models were developed: two multivariable logistic regression models (models 1 and 2) for predicting neurological function, and two Cox regression models (models 3 and 4) for predicting mortality. Models 2 and 4 included new neurological biomarkers as predictor variables, while models 1 and 3 excluded. We evaluated calibration, discrimination, clinical utility, and relative performance to establish superiority between the models.ResultsModel 1 incorporates variables such as gender, site of cardiopulmonary resuscitation (CPR), total CPR time, and acute physiology and chronic health evaluation II (APACHE II) score, while model 2 includes gender, site of CPR, APACHE II score, and serum level of ubiquitin carboxy-terminal hydrolase L1 (UCH-L1). Model 2 outperforms model 1, showcasing a superior area under the receiver operating characteristic curve (AUC) of 0.97 compared to 0.83. Additionally, model 2 exhibits improved accuracy, sensitivity, and specificity. The decision curve analysis confirms the net benefit of model 2. Similarly, models 3 and 4 are designed to predict 90-day mortality. Model 3 incorporates the variables such as site of CPR, total CPR time, and APACHE II score, while model 4 includes APACHE II score, total CPR time, and serum level of UCH-L1. Model 4 outperforms model 3, showcasing an AUC of 0.926 and a C-index of 0.830. The clinical decision curve analysis also confirms the net benefit of model 4.ConclusionsBy integrating new neurological biomarkers, we have successfully developed enhanced models that can predict 90-day neurological function and mortality outcomes more accurately.Copyright © 2024 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.