• Crit Care · Mar 2024

    Real-time machine learning model to predict short-term mortality in critically ill patients: development and international validation.

    • Leerang Lim, Ukdong Gim, Kyungjae Cho, Dongjoon Yoo, Ho Geol Ryu, and Hyung-Chul Lee.
    • Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
    • Crit Care. 2024 Mar 14; 28 (1): 7676.

    BackgroundA real-time model for predicting short-term mortality in critically ill patients is needed to identify patients at imminent risk. However, the performance of the model needs to be validated in various clinical settings and ethnicities before its clinical application. In this study, we aim to develop an ensemble machine learning model using routinely measured clinical variables at a single academic institution in South Korea.MethodsWe developed an ensemble model using deep learning and light gradient boosting machine models. Internal validation was performed using the last two years of the internal cohort dataset, collected from a single academic hospital in South Korea between 2007 and 2021. External validation was performed using the full Medical Information Mart for Intensive Care (MIMIC), eICU-Collaborative Research Database (eICU-CRD), and Amsterdam University Medical Center database (AmsterdamUMCdb) data. The area under the receiver operating characteristic curve (AUROC) was calculated and compared to that for the National Early Warning Score (NEWS).ResultsThe developed model (iMORS) demonstrated high predictive performance with an internal AUROC of 0.964 (95% confidence interval [CI] 0.963-0.965) and external AUROCs of 0.890 (95% CI 0.889-0.891) for MIMIC, 0.886 (95% CI 0.885-0.887) for eICU-CRD, and 0.870 (95% CI 0.868-0.873) for AmsterdamUMCdb. The model outperformed the NEWS with higher AUROCs in the internal and external validation (0.866 for the internal, 0.746 for MIMIC, 0.798 for eICU-CRD, and 0.819 for AmsterdamUMCdb; p < 0.001).ConclusionsOur real-time machine learning model to predict short-term mortality in critically ill patients showed excellent performance in both internal and external validations. This model could be a useful decision-support tool in the intensive care units to assist clinicians.© 2024. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…