-
Am. J. Respir. Crit. Care Med. · Jul 2024
Predicting Obstructive Sleep Apnea Based on Computed Tomography Scan Using Deep Learning Models.
- Jeong-Whun Kim, Kyungsu Lee, Hyun Jik Kim, Hae Chan Park, Jae Youn Hwang, Seok-Won Park, Hyoun-Joong Kong, and Jin Youp Kim.
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
- Am. J. Respir. Crit. Care Med. 2024 Jul 15; 210 (2): 211221211-221.
AbstractRationale: The incidence of clinically undiagnosed obstructive sleep apnea (OSA) is high among the general population because of limited access to polysomnography. Computed tomography (CT) of craniofacial regions obtained for other purposes can be beneficial in predicting OSA and its severity. Objectives: To predict OSA and its severity based on paranasal CT using a three-dimensional deep learning algorithm. Methods: One internal dataset (N = 798) and two external datasets (N = 135 and N = 85) were used in this study. In the internal dataset, 92 normal participants and 159 with mild, 201 with moderate, and 346 with severe OSA were enrolled to derive the deep learning model. A multimodal deep learning model was elicited from the connection between a three-dimensional convolutional neural network-based part treating unstructured data (CT images) and a multilayer perceptron-based part treating structured data (age, sex, and body mass index) to predict OSA and its severity. Measurements and Main Results: In a four-class classification for predicting the severity of OSA, the AirwayNet-MM-H model (multimodal model with airway-highlighting preprocessing algorithm) showed an average accuracy of 87.6% (95% confidence interval [CI], 86.8-88.6%) in the internal dataset and 84.0% (95% CI, 83.0-85.1%) and 86.3% (95% CI, 85.3-87.3%) in the two external datasets, respectively. In the two-class classification for predicting significant OSA (moderate to severe OSA), the area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, and F1 score were 0.910 (95% CI, 0.899-0.922), 91.0% (95% CI, 90.1-91.9%), 89.9% (95% CI, 88.8-90.9%), 93.5% (95% CI, 92.7-94.3%), and 93.2% (95% CI, 92.5-93.9%), respectively, in the internal dataset. Furthermore, the diagnostic performance of the Airway Net-MM-H model outperformed that of the other six state-of-the-art deep learning models in terms of accuracy for both four- and two-class classifications and area under the receiver operating characteristic curve for two-class classification (P < 0.001). Conclusions: A novel deep learning model, including a multimodal deep learning model and an airway-highlighting preprocessing algorithm from CT images obtained for other purposes, can provide significantly precise outcomes for OSA diagnosis.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.