• Bmc Med · Aug 2007

    Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario.

    • Laurent Briollais, Yuanyuan Wang, Isaac Rajendram, Venus Onay, Ellen Shi, Julia Knight, and Hilmi Ozcelik.
    • Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, M5T 3L9, Canada. laurent@mshri.on.ca.
    • Bmc Med. 2007 Aug 7; 5: 2222.

    BackgroundThere is growing evidence that gene-gene interactions are ubiquitous in determining the susceptibility to common human diseases. The investigation of such gene-gene interactions presents new statistical challenges for studies with relatively small sample sizes as the number of potential interactions in the genome can be large. Breast cancer provides a useful paradigm to study genetically complex diseases because commonly occurring single nucleotide polymorphisms (SNPs) may additively or synergistically disturb the system-wide communication of the cellular processes leading to cancer development.MethodsIn this study, we systematically studied SNP-SNP interactions among 19 SNPs from 18 key genes involved in major cancer pathways in a sample of 398 breast cancer cases and 372 controls from Ontario. We discuss the methodological issues associated with the detection of SNP-SNP interactions in this dataset by applying and comparing three commonly used methods: the logistic regression model, classification and regression trees (CART), and the multifactor dimensionality reduction (MDR) method.ResultsOur analyses show evidence for several simple (two-way) and complex (multi-way) SNP-SNP interactions associated with breast cancer. For example, all three methods identified XPD-[Lys751Gln]*IL10-[G(-1082)A] as the most significant two-way interaction. CART and MDR identified the same critical SNPs participating in complex interactions. Our results suggest that the use of multiple statistical approaches (or an integrated approach) rather than a single methodology could be the best strategy to elucidate complex gene interactions that have generally very different patterns.ConclusionThe strategy used here has the potential to identify complex biological relationships among breast cancer genes and processes. This will lead to the discovery of novel biological information, which will improve breast cancer risk management.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…