• World Neurosurg · May 2024

    Predicting the severity and discharge prognosis of traumatic brain injury based on intracranial pressure data using machine learning algorithms.

    • Jun Zhu, Yingchi Shan, Yihua Li, Xiang Wu, and Guoyi Gao.
    • Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
    • World Neurosurg. 2024 May 1; 185: e1348e1360e1348-e1360.

    ObjectiveThis study aimed to explore the potential of employing machine learning algorithms based on intracranial pressure (ICP), ICP-derived parameters, and their complexity to predict the severity and short-term prognosis of traumatic brain injury (TBI).MethodsA single-center prospectively collected cohort of neurosurgical intensive care unit admissions was analyzed. We extracted ICP-related data within the first 6 hours and processed them using complex algorithms. To indicate TBI severity and short-term prognosis, Glasgow Coma Scale score on the first postoperative day and Glasgow Outcome Scale-Extended score at discharge were used as binary outcome variables. A univariate logistic regression model was developed to predict TBI severity using only mean ICP values. Subsequently, 3 multivariate Random Forest (RF) models were constructed using different combinations of mean and complexity metrics of ICP-related data. To avoid overfitting, five-fold cross-validations were performed. Finally, the best-performing multivariate RF model was used to predict patients' discharge Glasgow Outcome Scale-Extended score.ResultsThe logistic regression model exhibited limited predictive ability with an area under the curve (AUC) of 0.558. Among multivariate models, the RF model, combining the mean and complexity metrics of ICP-related data, achieved the most robust ability with an AUC of 0.815. Finally, in terms of predicting discharge Glasgow Outcome Scale-Extended score, this model had a consistent performance with an AUC of 0.822. Cross-validation analysis confirmed the performance.ConclusionsThis study demonstrates the clinical utility of the RF model, which integrates the mean and complexity metrics of ICP data, in accurately predicting the TBI severity and short-term prognosis.Copyright © 2024 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…