• PLoS medicine · Jun 2007

    An epidemiological network model for disease outbreak detection.

    • Ben Y Reis, Isaac S Kohane, and Kenneth D Mandl.
    • Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America. ben_reis@harvard.edu
    • PLoS Med. 2007 Jun 1; 4 (6): e210e210.

    BackgroundAdvanced disease-surveillance systems have been deployed worldwide to provide early detection of infectious disease outbreaks and bioterrorist attacks. New methods that improve the overall detection capabilities of these systems can have a broad practical impact. Furthermore, most current generation surveillance systems are vulnerable to dramatic and unpredictable shifts in the health-care data that they monitor. These shifts can occur during major public events, such as the Olympics, as a result of population surges and public closures. Shifts can also occur during epidemics and pandemics as a result of quarantines, the worried-well flooding emergency departments or, conversely, the public staying away from hospitals for fear of nosocomial infection. Most surveillance systems are not robust to such shifts in health-care utilization, either because they do not adjust baselines and alert-thresholds to new utilization levels, or because the utilization shifts themselves may trigger an alarm. As a result, public-health crises and major public events threaten to undermine health-surveillance systems at the very times they are needed most.Methods And FindingsTo address this challenge, we introduce a class of epidemiological network models that monitor the relationships among different health-care data streams instead of monitoring the data streams themselves. By extracting the extra information present in the relationships between the data streams, these models have the potential to improve the detection capabilities of a system. Furthermore, the models' relational nature has the potential to increase a system's robustness to unpredictable baseline shifts. We implemented these models and evaluated their effectiveness using historical emergency department data from five hospitals in a single metropolitan area, recorded over a period of 4.5 y by the Automated Epidemiological Geotemporal Integrated Surveillance real-time public health-surveillance system, developed by the Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology on behalf of the Massachusetts Department of Public Health. We performed experiments with semi-synthetic outbreaks of different magnitudes and simulated baseline shifts of different types and magnitudes. The results show that the network models provide better detection of localized outbreaks, and greater robustness to unpredictable shifts than a reference time-series modeling approach.ConclusionsThe integrated network models of epidemiological data streams and their interrelationships have the potential to improve current surveillance efforts, providing better localized outbreak detection under normal circumstances, as well as more robust performance in the face of shifts in health-care utilization during epidemics and major public events.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.