• Medicine · Feb 2016

    Observational Study

    The Power of Renal Function Estimation Equations for Predicting Long-Term Kidney Graft Survival: A Retrospective Comparison of the Chronic Kidney Disease Epidemiology Collaboration and the Modification of Diet in Renal Disease Study Equations.

    • Hoon Young Choi, Dong Jin Joo, Mi Kyung Song, Myoung Soo Kim, Hyeong Cheon Park, Yu Seun Kim, and Beom Seok Kim.
    • From the Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (HYC, HCP, BSK); Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Korea (DJJ, MSK, YSK); The Research Institute for Transplantation (DJJ, MSK, YSK, BSK); and Department of Biostatistics Collaboration Unit (MKS), Yonsei University College of Medicine, Seoul, Korea.
    • Medicine (Baltimore). 2016 Feb 1; 95 (7): e2682e2682.

    AbstractEvaluation of renal function using an accurate estimation equation is important for predicting long-term graft survival. We designed this retrospective cohort study to evaluate the predictive power of renal function estimation by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) study equations for graft survival. We reviewed data of 3290 adult kidney transplant recipients who underwent transplantation at a single center between April 1979 and September 2012. The reliability and agreement of chronic kidney disease (CKD) stages based on the estimated glomerular filtration rate (eGFR) as calculated by the CKD-EPI and MDRD equations were evaluated using Bland-Altman plots and Cohen weighted kappa analyses. The predictive power of CKD stages as classified by each equation for graft survival was investigated using Cox regression models. Additionally, Pearson and Spearman correlation coefficients were used to reveal the relationship between graft survival and eGFR equations. Of 3290 kidney transplant recipients, 3040 were included in the analysis. The mean follow-up duration was 128.08 ± 83.54 months, and 29.8% of participants were reclassified to higher eGFR categories by the CKD-EPI equation compared to the category classification by the MDRD equation. eGFR calculated using the MDRD equation was underestimated compared to that calculated using the CKD-EPI equation, based on the Bland-Altman plot. In Cohen weighted kappa analysis, agreement across CKD stages classified using the 2 equations was reliable, but all CKD stages classified using the MDRD equation appeared to be in lower eGFR categories than those classified using the CKD-EPI equation. Pearson and Spearman correlation analyses indicated that the CKD stage as classified by the CKD-EPI equation, but not the MDRD equation, was significantly correlated with the risk of graft failure. In multivariable Cox regression analysis for graft failure after adjustment for CKD stage as determined using the MDRD equation, but not the CKD-EPI equation, stage reclassification was significantly associated with a lower graft failure risk. Our data from this long-term follow-up study indicate that the CKD-EPI equation has a stronger predictive power for kidney graft survival than does the MDRD equation in transplantation settings.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…