• Military medicine · Jul 2024

    Prediction of Occult Hemorrhage in the Lower Body Negative Pressure Model: Initial Validation of Machine Learning Approaches.

    • Navid Rashedi, Yifei Sun, Vikrant Vaze, Parikshit Shah, Ryan Halter, Jonathan T Elliott, and Norman A Paradis.
    • Department of Engineering Sciences, Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
    • Mil Med. 2024 Jul 3; 189 (7-8): e1629e1636e1629-e1636.

    IntroductionDetection of occult hemorrhage (OH) before progression to clinically apparent changes in vital signs remains an important clinical problem in managing trauma patients. The resource-intensiveness associated with continuous clinical patient monitoring and rescue from frank shock makes accurate early detection and prediction with noninvasive measurement technology a desirable innovation. Despite significant efforts directed toward the development of innovative noninvasive diagnostics, the implementation and performance of the newest bedside technologies remain inadequate. This poor performance may reflect the limitations of univariate systems based on one sensor in one anatomic location. It is possible that when signals are measured with multiple modalities in multiple locations, the resulting multivariate anatomic and temporal patterns of measured signals may provide additional discriminative power over single technology univariate measurements. We evaluated the potential superiority of multivariate methods over univariate methods. Additionally, we utilized machine learning-based models to compare the performance of noninvasive-only to noninvasive-plus-invasive measurements in predicting the onset of OH.Materials And MethodsWe applied machine learning methods to preexisting datasets derived using the lower body negative pressure human model of simulated hemorrhage. Employing multivariate measured physiological signals, we investigated the extent to which machine learning methods can effectively predict the onset of OH. In particular, we applied 2 ensemble learning methods, namely, random forest and gradient boosting.ResultsAnalysis of precision, recall, and area under the receiver operating characteristic curve showed a superior performance of multivariate approach to that of the univariate ones. In addition, when using both invasive and noninvasive features, random forest classifier had a recall 95% confidence interval (CI) of 0.81 to 0.86 with a precision 95% CI of 0.65 to 0.72. Interestingly, when only noninvasive features were employed, the results worsened only slightly to a recall 95% CI of 0.80 to 0.85 and a precision 95% CI of 0.61 to 0.73.ConclusionsMultivariate ensemble machine learning-based approaches for the prediction of hemodynamic instability appear to hold promise for the development of effective solutions. In the lower body negative pressure multivariate hemorrhage model, predictions based only on noninvasive measurements performed comparably to those using both invasive and noninvasive measurements.© The Association of Military Surgeons of the United States 2024. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.