-
- Jay H Kramer, Christopher Spurney, Micaela Iantorno, Constantine Tziros, I-Tong Mak, M Isabel Tejero-Taldo, Joanna J Chmielinska, Andrei M Komarov, and William B Weglicki.
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington DC 20037, USA. phyjhk@gwumc.edu
- Am. J. Med. Sci. 2009 Jul 1; 338 (1): 222722-7.
AbstractHypomagnesemia continues to be a significant clinical disorder that is present in patients with diabetes mellitus, alcoholism, and treatment with magnesuric drugs (diuretics, cancer chemotherapy agents, etc.). To determine the role of magnesium in cardiovascular pathophysiology, we have used dietary restriction of this cation in animal models. This review highlights some key observations that helped formulate the hypothesis that release of substance P (SP) during experimental dietary Mg deficiency (MgD) may initiate a cascade of deleterious inflammatory, oxidative, and nitrosative events, which ultimately promote cardiomyopathy, in situ cardiac dysfunction, and myocardial intolerance to secondary stresses. SP acts primarily through neurokinin-1 receptors of inflammatory and endothelial cells, and may induce production of reactive oxygen and nitrogen species (superoxide anion, NO*, peroxynitrite, hydroxyl radical), leading to enhanced consumption of tissue antioxidants; stimulate release of inflammatory mediators; promote tissue adhesion molecule expression; and enhance inflammatory cell tissue infiltration and cardiovascular lesion formation. These SP-mediated events may predispose the heart to injury if faced with subsequent oxidative stressors (ischemia/reperfusion, certain drugs) or facilitate development of in situ cardiac dysfunction, especially with prolonged dietary Mg restriction. Significant protection against most of these MgD-mediated events has been observed with interventions that modulate neuronal SP release or its bioactivity, and with several antioxidants (vitamin E, probucol, epicaptopril, d-propranolol). In view of the clinical prevalence of hypomagnesemia, new treatments, beyond magnesium repletion, may be needed to diminish deleterious neurogenic and prooxidative components described in this article.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.