• Bratisl Med J · Jan 2024

    Integrated global and local feature extraction and classification from computerized tomography (CT) images for lung cancer classification.

    • Murugaiyan Suresh Kumar, Panneerselvam Deepak, Parthasarathy Vasanthan, and Kandasamy Vijayakumar.
    • Bratisl Med J. 2024 Jan 1; 125 (4): 223232223-232.

    AbstractDespite being the second most often diagnosed form of cancer, lung cancers are rarely found in the general population. It is proposed in this study to employ a methodology of extracting both global and local features from CT scan images for the identification of lung cancer. Data gathering, globalised and localised training as well as testing the model are all part of this structure. This study makes use of 800 CT scan images. Images are pre-processed by warping and cropping in advance of the global testing step. Each image is represented by a feature vector employing eight distinct types of image characteristics, which are taken from the images. After creating feature vectors, three machine learning methods are employed to create detection models. Every medical image has been partitioned over a series of simple divisions throughout the training and testing process locally. To describe each block, feature vectors are derived from the image features that worked effectively in the general phase of the experiment. Similar extracted features are then used to build detection systems for all picture blocks using the learning strategies that were effective in the global stage. SVM using Haar Wavelet characteristics had an accuracy, sensitivity, and specificity of 89%, 90%, and 89%, respectively. One might get 90%‑accurate results with SVM and 91%‑sensitive and 91%‑specific results using SVM plus HOG features. Finally, the utilisation of SVM with Gabor Filter characteristics achieved the greatest correctness, specificity, and sensitivity values, particularly 87%, 86%, and 87%, respectively (Tab. 3, Fig. 7, Ref. 18). Keywords: feature extraction, support vector machine, lung cancer, classification, machine learning.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…