• Sao Paulo Med J · Jan 2009

    Immunoarchitectural characterization of a human skin model reconstructed in vitro.

    • Luís Ricardo Martinhão Souto, José Vassallo, Jussara Rehder, Glauce Aparecida Pinto, and Maria Beatriz Puzzi.
    • School of Medical Sciences, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
    • Sao Paulo Med J. 2009 Jan 1; 127 (1): 283328-33.

    Context And ObjectiveOver the last few years, different models for human skin equivalent reconstructed in vitro (HSERIV) have been reported for clinical usage and applications in research for the pharmaceutical industry. Before release for routine use as human skin replacements, HSERIV models need to be tested regarding their similarity with in vivo skin, using morphological (architectural) and immunohistochemical (functional) analyses. A model for HSERIV has been developed in our hospital, and our aim here was to further characterize its immunoarchitectural features by comparing them with human skin, before it can be tested for clinical use, e.g. for severe burns or wounds, whenever ancillary methods are not indicated.Design And SettingExperimental laboratory study, in the Skin Cell Culture Laboratory, School of Medical Sciences, Universidade Estadual de Campinas.MethodsHistological sections were stained with hematoxylin-eosin, Masson's trichrome for collagen fibers, periodic acid-Schiff reagent for basement membrane and glycogen, Weigert-Van Gieson for elastic fibers and Fontana-Masson for melanocytes. Immunohistochemistry was used to localize cytokeratins (broad spectrum of molecular weight, AE1/AE3), high molecular weight cytokeratins (34betaE12), low molecular weight cytokeratins (35betaH11), cytokeratins 7 and 20, vimentin, S-100 protein (for melanocytic and dendritic cells), CD68 (KP1, histiocytes) and CD34 (QBend, endothelium).ResultsHistology revealed satisfactory similarity between HSERIV and in vivo skin. Immunohistochemical analysis on HSERIV demonstrated that the marker pattern was similar to what is generally present in human skin in vivo.ConclusionHSERIV is morphologically and functionally compatible with human skin observed in vivo.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.