• Neurosurgery · Sep 2024

    Preoperative Mobile Health Data Improve Predictions of Recovery From Lumbar Spine Surgery.

    • Jacob K Greenberg, Madelyn Frumkin, Ziqi Xu, Jingwen Zhang, Saad Javeed, Justin K Zhang, Braeden Benedict, Kathleen Botterbush, Salim Yakdan, Camilo A Molina, Brenton H Pennicooke, Daniel Hafez, John I Ogunlade, Nicholas Pallotta, Munish C Gupta, Jacob M Buchowski, Brian Neuman, Michael Steinmetz, Zoher Ghogawala, Michael P Kelly, Burel R Goodin, Jay F Piccirillo, Thomas L Rodebaugh, Chenyang Lu, and Wilson Z Ray.
    • Department of Neurological Surgery, Washington University, St. Louis , Missouri , USA.
    • Neurosurgery. 2024 Sep 1; 95 (3): 617626617-626.

    Background And ObjectivesNeurosurgeons and hospitals devote tremendous resources to improving recovery from lumbar spine surgery. Current efforts to predict surgical recovery rely on one-time patient report and health record information. However, longitudinal mobile health (mHealth) assessments integrating symptom dynamics from ecological momentary assessment (EMA) and wearable biometric data may capture important influences on recovery. Our objective was to evaluate whether a preoperative mHealth assessment integrating EMA with Fitbit monitoring improved predictions of spine surgery recovery.MethodsPatients age 21-85 years undergoing lumbar surgery for degenerative disease between 2021 and 2023 were recruited. For up to 3 weeks preoperatively, participants completed EMAs up to 5 times daily asking about momentary pain, disability, depression, and catastrophizing. At the same time, they were passively monitored using Fitbit trackers. Study outcomes were good/excellent recovery on the Quality of Recovery-15 (QOR-15) and a clinically important change in Patient-Reported Outcomes Measurement Information System Pain Interference 1 month postoperatively. After feature engineering, several machine learning prediction models were tested. Prediction performance was measured using the c-statistic.ResultsA total of 133 participants were included, with a median (IQR) age of 62 (53, 68) years, and 56% were female. The median (IQR) number of preoperative EMAs completed was 78 (61, 95), and the median (IQR) number of days with usable Fitbit data was 17 (12, 21). 63 patients (48%) achieved a clinically meaningful improvement in Patient-Reported Outcomes Measurement Information System pain interference. Compared with traditional evaluations alone, mHealth evaluations led to a 34% improvement in predictions for pain interference (c = 0.82 vs c = 0.61). 49 patients (40%) had a good or excellent recovery based on the QOR-15. Including preoperative mHealth data led to a 30% improvement in predictions of QOR-15 (c = 0.70 vs c = 0.54).ConclusionMultimodal mHealth evaluations improve predictions of lumbar surgery outcomes. These methods may be useful for informing patient selection and perioperative recovery strategies.Copyright © Congress of Neurological Surgeons 2024. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…