• Military medicine · Aug 2024

    Modeling Risk for Lower Extremity Musculoskeletal Injury in U.S. Military Academy Cadet Basic Training.

    • Darren W Hearn, Zachary Yukio Kerr, Erik A Wikstrom, Donald L Goss, Kenneth L Cameron, Stephen W Marshall, and Darin A Padua.
    • Doctor of Physical Therapy Program, South College, Knoxville, TN 37909, USA.
    • Mil Med. 2024 Aug 30; 189 (9-10): e2039e2046e2039-e2046.

    IntroductionSport and tactical populations are often impacted by musculoskeletal injury. Many publications have highlighted that risk is correlated with multiple variables. There do not appear to be existing studies that have evaluated a predetermined combination of risk factors that provide a pragmatic model for application in tactical and/or sports settings.PurposeTo develop and test the predictive capability of multivariable risk models of lower extremity musculoskeletal injury during cadet basic training at the U.S.Military Academy.Materials And MethodsCadets from the class of 2022 served as the study population. Sex and injury history were collected by questionnaire. Body Mass Index (BMI) and aerobic fitness were calculated during testing in the first week of training. Movement screening was performed using the Landing Error Scoring System during week 1 and cadence was collected using an accelerometer worn throughout initial training. Kaplan-Meier survival curves estimated group differences in time to the first musculoskeletal injury during training. Cox regression was used to estimate hazard ratios (HRs) and Akaike Information Criterion (AIC) was used to compare model fit.ResultsCox modeling using HRs indicated that the following variables were associated with injury risk : Sex, history of injury, Landing Error Scoring System Score Category, and Physical Fitness Test (PT) Run Score. When controlling for sex and history of injury, amodel including aerobic fitness and BMI outperformed the model including movement screening risk and cadence (AIC: 1068.56 vs. 1074.11) and a model containing all variables that were significant in the univariable analysis was the most precise (AIC: 1063.68).ConclusionsIn addition to variables typically collected in this tactical setting (Injury History, BMI, and aerobic fitness), the inclusion of kinematic testing appears to enhance the precision of the risk identification model and will likely continue to be included in screening cadets at greater risk.© The Association of Military Surgeons of the United States 2024. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.