• J Transl Med · Jan 2009

    Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer.

    • Monika Pietrowska, Lukasz Marczak, Joanna Polanska, Katarzyna Behrendt, Elzbieta Nowicka, Anna Walaszczyk, Aleksandra Chmura, Regina Deja, Maciej Stobiecki, Andrzej Polanski, Rafal Tarnawski, and Piotr Widlak.
    • Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland. m_pietrowska@io.gliwice.pl
    • J Transl Med. 2009 Jan 1;7:60.

    BackgroundMass spectrometric analysis of the blood proteome is an emerging method of clinical proteomics. The approach exploiting multi-protein/peptide sets (fingerprints) detected by mass spectrometry that reflect overall features of a specimen's proteome, termed proteome pattern analysis, have been already shown in several studies to have applicability in cancer diagnostics. We aimed to identify serum proteome patterns specific for early stage breast cancer patients using MALDI-ToF mass spectrometry.MethodsBlood samples were collected before the start of therapy in a group of 92 patients diagnosed at stages I and II of the disease, and in a group of age-matched healthy controls (104 women). Serum specimens were purified and the low-molecular-weight proteome fraction was examined using MALDI-ToF mass spectrometry after removal of albumin and other high-molecular-weight serum proteins. Protein ions registered in a mass range between 2,000 and 10,000 Da were analyzed using a new bioinformatic tool created in our group, which included modeling spectra as a sum of Gaussian bell-shaped curves.ResultsWe have identified features of serum proteome patterns that were significantly different between blood samples of healthy individuals and early stage breast cancer patients. The classifier built of three spectral components that differentiated controls and cancer patients had 83% sensitivity and 85% specificity. Spectral components (i.e., protein ions) that were the most frequent in such classifiers had approximate m/z values of 2303, 2866 and 3579 Da (a biomarker built from these three components showed 88% sensitivity and 78% specificity). Of note, we did not find a significant correlation between features of serum proteome patterns and established prognostic or predictive factors like tumor size, nodal involvement, histopathological grade, estrogen and progesterone receptor expression. In addition, we observed a significantly (p = 0.0003) increased level of osteopontin in blood of the group of cancer patients studied (however, the plasma level of osteopontin classified cancer samples with 88% sensitivity but only 28% specificity).ConclusionMALDI-ToF spectrometry of serum has an obvious potential to differentiate samples between early breast cancer patients and healthy controls. Importantly, a classifier built on MS-based serum proteome patterns outperforms available protein biomarkers analyzed in blood by immunoassays.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…