-
Journal of neurosurgery · Sep 2024
Generation and applications of synthetic computed tomography images for neurosurgical planning.
- Yiheng Tan, Ruchit V Patel, Zongming Wang, Yu Luo, Jinping Chen, Jie Luo, Wenli Chen, Zhigang Mao, Raymond Y Huang, Haijun Wang, Wenya Linda Bi, and Shun Yao.
- 1Department of Neurosurgery, Center for Pituitary Tumor Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- J. Neurosurg. 2024 Sep 1; 141 (3): 742751742-751.
ObjectiveCT and MRI are synergistic in the information provided for neurosurgical planning. While obtaining both types of images lends unique data from each, doing so adds to cost and exposes patients to additional ionizing radiation after MRI has been performed. Cross-modal synthesis of high-resolution CT images from MRI sequences offers an appealing solution. The authors therefore sought to develop a deep learning conditional generative adversarial network (cGAN) which performs this synthesis.MethodsPreoperative paired CT and contrast-enhanced MR images were collected for patients with meningioma, pituitary tumor, vestibular schwannoma, and cerebrovascular disease. CT and MR images were denoised, field corrected, and coregistered. MR images were fed to a cGAN that exported a "synthetic" CT scan. The accuracy of synthetic CT images was assessed objectively using the quantitative similarity metrics as well as by clinical features such as sella and internal auditory canal (IAC) dimensions and mastoid/clinoid/sphenoid aeration.ResultsA total of 92,981 paired CT/MR images obtained in 80 patients were used for training/testing, and 10,068 paired images from 10 patients were used for external validation. Synthetic CT images reconstructed the bony skull base and convexity with relatively high accuracy. Measurements of the sella and IAC showed a median relative error between synthetic CT scans and ground truth images of 6%, with greater variability in IAC reconstruction compared with the sella. Aerations in the mastoid, clinoid, and sphenoid regions were generally captured, although there was heterogeneity in finer air cell septations. Performance varied based on pathology studied, with the highest limitation observed in evaluating meningiomas with intratumoral calcifications or calvarial invasion.ConclusionsThe generation of high-resolution CT scans from MR images through cGAN offers promise for a wide range of applications in cranial and spinal neurosurgery, especially as an adjunct for preoperative evaluation. Optimizing cGAN performance on specific anatomical regions may increase its clinical viability.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.