• Spine · Apr 2024

    An Interpretable Machine Learning Approach to Predict Survival Outcomes in Spinal and Sacropelvic Chordomas.

    • Mert Karabacak, Matthew T Carr, Alexander J Schupper, Abhiraj D Bhimani, Jeremy Steinberger, and Konstantinos Margetis.
    • Department of Neurosurgery, Mount Sinai Health System, New York, NY.
    • Spine. 2024 Apr 12.

    Study DesignRetrospective, population-based cohort study.ObjectiveThis study aimed to develop machine learning (ML) models to predict five-year and 10-year mortality in spinal and sacropelvic chordoma patients and integrate them into a web application for enhanced prognostication.Summary Of Background DataPast research has uncovered factors influencing survival in spinal chordoma patients. While identifying individual predictors is important, personalized survival predictions are equally vital. Though prior efforts have resulted in nomograms aiming to serve this purpose, they cannot capture complex interactions within data and rely on statistical assumptions that may not fit real-world data.MethodsAdult spinal and sacropelvic chordoma patients were identified from the National Cancer Database. Sociodemographic, clinicopathologic, diagnostic, and treatment-related variables were utilized as predictive features. Five supervised ML algorithms (TabPFN, CatBoost, XGBoost, LightGBM, and Random Forest) were implemented to predict mortality at five and 10 years postdiagnosis. Model performance was primarily evaluated using the area under the receiver operating characteristic (AUROC). SHapley Additive exPlanations (SHAP) values and partial dependence plots provided feature importance and interpretability. The top models were integrated into a web application.ResultsFrom the NCDB, 1206 adult patients diagnosed with histologically confirmed spinal and sacropelvic chordomas were retrieved for the five-year mortality outcome [423 (35.1%) with five-year mortality] and 801 patients for the 10-year mortality outcome [588 (73.4%) with 10-year mortality]. Top-performing models for both of the outcomes were the models created with the CatBoost algorithm. The CatBoost model for five-year mortality predictions displayed a mean AUROC of 0.801, and the CatBoost model predicting 10-year mortality yielded a mean AUROC of 0.814.ConclusionsThis study developed ML models that can accurately predict five-year to 10-year survival probabilities in spinal chordoma patients. Integrating these interpretable, personalized prognostic models into a web application provides quantitative survival estimates for a given patient. The local interpretability enables transparency into how predictions are influenced. Further external validation is warranted to support generalizability and clinical utility.Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.