• Medicine · Apr 2024

    Retrospective analysis of predictive factors for AVF dysfunction in patients undergoing MHD.

    • Liqin Wang, Yanna Yang, and Qianqian Zhao.
    • Hemodialysis Center, Hefei Third Clinical College (Hefei Third People's Hospital), Anhui Medical University, Hefei, China.
    • Medicine (Baltimore). 2024 Apr 19; 103 (16): e37737e37737.

    AbstractTo construct an early clinical prediction model for AVF dysfunction in patients undergoing Maintenance Hemodialysis (MHD) and perform internal and external verifications. We retrospectively examined clinical data from 150 patients diagnosed with MHD at Hefei Third People's Hospital from January 2014 to June 2023. Depending on arteriovenous fistula (AVF) functionality, patients were categorized into dysfunctional (n = 62) and functional (n = 88) cohorts. Using the least absolute shrinkage and selection operator(LASSO) regression model, variables potentially influencing AVF functionality were filtered using selected variables that underwent multifactorial logistic regression analysis. The Nomogram model was constructed using the R software, and the Area Under Curve(AUC) value was calculated. The model's accuracy was appraised through the calibration curve and Hosmer-Lemeshow test, with the model undergoing internal validation using the bootstrap method. There were 11 factors exhibiting differences between the group of patients with AVF dysfunction and the group with normal AVF function, including age, sex, course of renal failure, diabetes, hyperlipidemia, Platelet count (PLT), Calcium (Ca), Phosphorus, D-dimer (D-D), Fibrinogen (Fib), and Anastomotic width. These identified factors are included as candidate predictive variables in the LASSO regression analysis. LASSO regression identified age, sex, diabetes, hyperlipidemia, anastomotic diameter, blood phosphorus, and serum D-D levels as 7 predictive factors. Unconditional binary logistic regression analysis revealed that advanced age (OR = 4.358, 95% CI: 1.454-13.062), diabetes (OR = 4.158, 95% CI: 1.243-13.907), hyperlipidemia (OR = 3.651, 95% CI: 1.066-12.499), D-D (OR = 1.311, 95% CI: 1.063-1.616), and hyperphosphatemia (OR = 4.986, 95% CI: 2.513-9.892) emerged as independent risk factors for AVF dysfunction in MHD patients. The AUC of the predictive model was 0.934 (95% CI: 0.897-0.971). The Hosmer-Lemeshow test showed high consistency between the model's predictive results and actual clinical observations (χ2 = 1.553, P = .092). Internal validation revealed an AUC of 0.911 (95% CI: 0.866-0.956), with the Calibration calibration curve nearing the ideal curve. Advanced age, coexisting diabetes, hyperlipidemia, blood D-D levels, and hyperphosphatemia are independent risk factors for AVF dysfunction in patients undergoing MHD.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.