• Eur Spine J · Aug 2004

    Gait analysis in patients with idiopathic scoliosis.

    • Inès A Kramers-de Quervain, Roland Müller, A Stacoff, Dieter Grob, and Edgar Stüssi.
    • Laboratory for Biomechanics, ETH Zürich, Wagistrasse 4, 8952 Schlieren, Switzerland. kramers@biomech.mat.ethz.ch
    • Eur Spine J. 2004 Aug 1; 13 (5): 449456449-56.

    IntroductionThe goal of this study was to observe scoliotic subjects during level walking to identify asymmetries--which may be related to a neurological dysfunction or the spinal deformity itself-and to correlate these to the severity of the scoliotic curve.MethodsWe assessed the gait pattern of ten females (median age 14.4) with idiopathic scoliosis characterised by a left-lumbar and a right-thoracic curve component. Gait analysis consisted of 3D kinematic (VICON) and kinetic (Kistler force plates) measurements. The 3D-segment positions of the head, trunk and pelvis, as well as the individual joint angles of the upper and lower extremities, were computed during walking and static standing. Calculation of pertinent kinetic and kinematic parameters allowed statistical comparison.ResultsAll subjects walked at a normal velocity (median: 1.22 m/s; range:1.08-1.30 m/s; height-adjusted velocity: 0.75 m/s; range: 0.62-0.88 m/s). The timing of the individual gait phases was normal and symmetrical for the whole group. Sagittal plane hip, knee and ankle motion followed a physiological pattern. Significant asymmetry was observed in the trunk's rotational behaviour in the transverse plane. During gait, the pelvis and the head rotated symmetrically to the line of progression, whereas trunk rotation was asymmetric, with increased relative forward rotation of the right upper body in relation to the pelvis. This produced a torsional offset to the line of progression. Minimal torsion (at right heel strike) measured: median 1.0 degree (range: 5.1 degrees -8.3 degrees), and maximal torsion (at left heel strike) measured 11.4 degrees (range 6.9 degrees -17.9 degrees). The magnitude of the torsional offset during gait correlated to the severity of the thoracic deformity and to the standing posture, whereas the range of the rotational movement was not affected by the severity of the deformity. The ground reaction forces revealed a significant asymmetry of [Msz], the free rotational moment around the vertical axis going through the point of equivalent force application. On the right side, the initial endo-rotational moment was lower, followed by a higher exo-rotational moment than on the left. All the other force parameters (vertical, medio-lateral, anterior-posterior), did not show a significant side difference for the whole group. The use of a brace stiffened torsional motion. However the torsional offset and the asymmetry of the free rotational moment remained unchanged.ConclusionThe most significant and marked asymmetry was seen in the transverse plane, denoted as a torsional offset of the upper trunk in relation to the symmetrically rotating pelvis. This motion pattern was reflected by a ground-reaction-force asymmetry of the free rotational moment. Further studies are needed to investigate whether this behaviour is solely an expression of the structural deformity or whether it could enhance the progression of the torsional deformity.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.