-
J. Mol. Cell. Cardiol. · Jun 2012
Neuronal nitric oxide synthase is up-regulated by angiotensin II and attenuates NADPH oxidase activity and facilitates relaxation in murine left ventricular myocytes.
- Chun Zi Jin, Ji Hyun Jang, Yue Wang, Jae Gon Kim, Young Min Bae, Jun Shi, Cheng Ri Che, Sung Joon Kim, and Yin Hua Zhang.
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- J. Mol. Cell. Cardiol. 2012 Jun 1;52(6):1274-81.
AbstractAngiotensin II (Ang II) is critical in myocardial pathogenesis, mostly via stimulating NADPH oxidase. Neuronal nitric oxide synthase (nNOS) has recently been shown to play important roles in modulating myocardial oxidative stress and contractility. Here, we examine whether nNOS is regulated by Ang II and affects NADPH oxidase production of intracellular reactive oxygen species (ROS(i)) and contractile function in left ventricular (LV) myocytes. Our results showed that Ang II induced biphasic effects on ROS(i) and LV myocyte relaxation (TR(50)) without affecting the amplitude of sarcomere shortening and L-type Ca(2+) current density: TR(50) was prolonged at 30 min but was shortened after 3h (or after Ang II treatment in vivo). Correspondingly, ROS(i) was increased, followed by a reduction to control level. Quantitative RT-PCR and immunoblotting experiments showed that Ang II (3h) increased the mRNA and protein expression of nNOS and increased NO production (nitrite assay) in LV myocyte homogenates, suggesting that nNOS activity may be enhanced and involved in mediating the effects of Ang II. Indeed, n(omega)-nitro-l-arginine methyl ester (l-NAME) or a selective nNOS inhibitor, S-methyl-l-thiocitrulline (SMTC) increased NADPH oxidase production of superoxide/ROS(i) and abolished faster myocyte relaxation induced by Ang II. The positive lusitropic effect of Ang II was not mediated by PKA-, CaMKII-dependent signaling or peroxynitrite. Conversely, inhibition of cGMP/PKG pathway abolished the Ang II-induced faster relaxation by reducing phospholamban (PLN) Ser(16) phosphorylation. Taken together, these results clearly demonstrate that myocardial nNOS is up-regulated by Ang II and functions as an early adaptive mechanism to attenuate NADPH oxidase activity and facilitate myocardial relaxation.Copyright © 2012 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.