• Medicine · Apr 2024

    A practical nomogram for predicting early death in elderly small cell lung cancer patients: A SEER-based study.

    • Rui Chen, Yuzhen Liu, Fangfang Tou, and Junping Xie.
    • Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
    • Medicine (Baltimore). 2024 Apr 26; 103 (17): e37759e37759.

    AbstractThis study aimed to identify risk factors for early death in elderly small cell lung cancer (SCLC) patients and develop nomogram prediction models for all-cause and cancer-specific early death to improve patient management. Data of elderly patients diagnosed with SCLC were extracted from the SEER database, then randomly divided into training and validation cohorts. Univariate and stepwise multivariable Logistic regression analyses were performed on the training cohort to identify independent risk factors for early death in these patients. Nomograms were developed based on these factors to predict the overall risk of early death. The efficacy of the nomograms was validated using various methods, including ROC analysis, calibration curves, DCA, NRI, and IDI. Among 2077 elderly SCLC patients, 773 died within 3 months, 713 due to cancer-specific causes. Older age, higher AJCC staging, brain metastases, and lack of surgery, chemotherapy, or radiotherapy increase the risk of all-cause early death, while higher AJCC staging, brain metastases, lung metastases, and lack of surgery, chemotherapy, or radiotherapy increase the risk of cancer-specific death (P < .05). These identified factors were used to construct 2 nomograms to predict the risk of early death. The ROC indicated that the nomograms performed well in predicting both all-cause early death (AUC = 0.823 in the training cohort and AUC = 0.843 in the validation cohort) and cancer-specific early death (AUC = 0.814 in the training cohort and AUC = 0.841 in the validation cohort). The results of calibration curves, DCAs, NRI and IDI also showed that the 2 sets of nomograms had good predictive power and clinical utility and were superior to the commonly used TNM staging system. The nomogram prediction models constructed in this study can effectively assist clinicians in predicting the risk of early death in elderly SCLC patients, and can also help physicians screen patients at higher risk and develop personalized treatment plans for them.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…