-
Comparative Study
Identifying prehospital trauma patients from ambulance patient care records; comparing two methods using linked data in New South Wales, Australia.
- Matthew Miller, Louisa Jorm, Chris Partyka, Brian Burns, Karel Habig, Carissa Oh, Sam Immens, Neil Ballard, and Blanca Gallego.
- Aeromedical Operations, New South Wales Ambulance, Rozelle, NSW 2039, Australia; Department of Anesthesia, St George Hospital, Kogarah, NSW 2217 Australia; Centre for Big Data Research in Health at UNSW Sydney, Kensington, NSW 2052, Australia. Electronic address: m.r.miller@unsw.edu.au.
- Injury. 2024 Jul 1; 55 (7): 111570111570.
BackgroundLinked datasets for trauma system monitoring should ideally follow patients from the prehospital scene to hospital admission and post-discharge. Having a well-defined cohort when using administrative datasets is essential because they must capture the representative population. Unlike hospital electronic health records (EHR), ambulance patient-care records lack access to sources beyond immediate clinical notes. Relying on a limited set of variables to define a study population might result in missed patient inclusion. We aimed to compare two methods of identifying prehospital trauma patients: one using only those documented under a trauma protocol and another incorporating additional data elements from ambulance patient care records.MethodsWe analyzed data from six routinely collected administrative datasets from 2015 to 2018, including ambulance patient-care records, aeromedical data, emergency department visits, hospitalizations, rehabilitation outcomes, and death records. Three prehospital trauma cohorts were created: an Extended-T-protocol cohort (patients transported under a trauma protocol and/or patients with prespecified criteria from structured data fields), T-protocol cohort (only patients documented as transported under a trauma protocol) and non-T-protocol (extended-T-protocol population not in the T-protocol cohort). Patient-encounter characteristics, mortality, clinical and post-hospital discharge outcomes were compared. A conservative p-value of 0.01 was considered significant RESULTS: Of 1 038 263 patient-encounters included in the extended-T-population 814 729 (78.5 %) were transported, with 438 893 (53.9 %) documented as a T-protocol patient. Half (49.6 %) of the non-T-protocol sub-cohort had an International Classification of Disease 10th edition injury or external cause code, indicating 79644 missed patients when a T-protocol-only definition was used. The non-T-protocol sub-cohort also identified additional patients with intubation, prehospital blood transfusion and positive eFAST. A higher proportion of non-T protocol patients than T-protocol patients were admitted to the ICU (4.6% vs 3.6 %), ventilated (1.8% vs 1.3 %), received in-hospital transfusion (7.9 vs 6.8 %) or died (1.8% vs 1.3 %). Urgent trauma surgery was similar between groups (1.3% vs 1.4 %).ConclusionThe extended-T-population definition identified 50 % more admitted patients with an ICD-10-AM code consistent with an injury, including patients with severe trauma. Developing an EHR phenotype incorporating multiple data fields of ambulance-transported trauma patients for use with linked data may avoid missing these patients.Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.