-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jun 2011
Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality.
- Sascha David, Chandra C Ghosh, Philipp Kümpers, Nelli Shushakova, Paul Van Slyke, Eliyahu V Khankin, S Ananth Karumanchi, Dan Dumont, and Samir M Parikh.
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
- Am. J. Physiol. Lung Cell Mol. Physiol. 2011 Jun 1;300(6):L851-62.
AbstractA synthetic 7-mer, HHHRHSF, was recently identified by screening a phage display library for binding to the Tie-2 receptor. A polyethylene-oxide clustered version of this peptide, termed vasculotide (VT), was reported to activate Tie-2 and promote angiogenesis in a mouse model of diabetic ulcer. We hypothesized that VT administration would defend endothelial barrier function against sepsis-associated mediators of permeability, prevent lung vascular leakage arising in endotoxemia, and improve mortality in endotoxemic mice. In confluent human microvascular endothelial cells, VT prevented endotoxin-induced (lipopolysaccharides, LPS O111:B4) gap formation, loss of monolayer resistance, and translocation of labeled albumin. In 8-wk-old male C57Bl6/J mice given a ∼70% lethal dose of endotoxin (15 mg/kg ip), VT prevented lung vascular leakage and reversed the attenuation of lung vascular endothelial cadherin induced by endotoxemia. These protective effects of VT were associated with activation of Tie-2 and its downstream mediator, Akt. Echocardiographic studies showed only a nonsignificant trend toward improved myocardial performance associated with VT. Finally, we evaluated survival in this mouse model. Pretreatment with VT improved survival by 41.4% (n = 15/group, P = 0.02) and post-LPS administration of VT improved survival by 33.3% (n = 15/group, P = 0.051). VT-mediated protection from LPS lethality was lost in Tie-2 heterozygous mice, in agreement with VT's proposed receptor specificity. We conclude that this synthetic Tie-2 agonist, completely unrelated to endogenous Tie-2 ligands, is sufficient to activate the receptor and its downstream pathways in vivo and that the Tie-2 receptor may be an important target for therapeutic evaluation in conditions of pathological vascular leakage.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.