• Yonsei medical journal · May 2024

    Prediction of High-Risk Neuroblastoma Among Neuroblastic Tumors Using Radiomics Features Derived from Magnetic Resonance Imaging: A Pilot Study.

    • Jisoo Kim, Young Hun Choi, Haesung Yoon, Hyun Ji Lim, Jung Woo Han, and Mi-Jung Lee.
    • Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
    • Yonsei Med. J. 2024 May 1; 65 (5): 293301293-301.

    PurposeThis study aimed to predict high-risk neuroblastoma among neuroblastic tumors using radiomics features extracted from MRI.Materials And MethodsPediatric patients (age≤18 years) diagnosed with neuroblastic tumors who had pre-treatment MR images available were enrolled from institution A from January 2010 to November 2019 (training set) and institution B from January 2016 to January 2022 (test set). Segmentation was performed with regions of interest manually drawn along tumor margins on the slice with the widest tumor area by two radiologists. First-order and texture features were extracted and intraclass correlation coefficients (ICCs) were calculated. Multivariate logistic regression (MLR) and random forest (RF) models from 10-fold cross-validation were built using these features. The trained MLR and RF models were tested in an external test set.ResultsThirty-two patients (M:F=23:9, 26.0±26.7 months) were in the training set and 14 patients (M:F=10:4, 33.4±20.4 months) were in the test set with radiomics features (n=930) being extracted. For 10 of the most relevant features selected, intra- and inter-observer variability was moderate to excellent (ICCs 0.633-0.911, 0.695-0.985, respectively). The area under the receiver operating characteristic curve (AUC) was 0.94 (sensitivity 67%, specificity 91%, and accuracy 84%) for the MLR model and the average AUC was 0.83 (sensitivity 44%, specificity 87%, and accuracy 75%) for the RF model from 10-fold cross-validation. In the test set, AUCs of the MLR and RF models were 0.94 and 0.91, respectively.ConclusionAn MRI-based radiomics model can help predict high-risk neuroblastoma among neuroblastic tumors.© Copyright: Yonsei University College of Medicine 2024.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.