• PLoS medicine · May 2024

    Observational Study

    Deworming and micronutrient status by community open defecation prevalence: An observational study using nationally representative data from India, 2016-2018.

    • Suman Chakrabarti, AjjampurSitara S RSSR0000-0003-3419-6577The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India., WaddingtonHugh SharmaHS0000-0003-3859-3342London School of Hygiene & Tropical Medicine and London International Development Centre, London, United Kingdom., Avinash Kishore, Phuong H Nguyen, and Samuel Scott.
    • International Food Policy Research Institute, Washington DC, and India.
    • PLoS Med. 2024 May 1; 21 (5): e1004402e1004402.

    BackgroundMicronutrient deficiencies are widespread in India. Soil-transmitted helminth (STH) infections are acquired by interaction with soil and water contaminated by human feces and lead to blood loss and poor micronutrient absorption. The current recommendation for control of STH-related morbidity is targeted deworming, yet little is known about the effectiveness of deworming on micronutrient status in varying sanitation contexts. Ranging between 1% and 40% prevalence across Indian states, open defecation (OD) remains high despite India's investments at elimination by promoting community-wide sanitation. This variation provides an opportunity to study the relationship between deworming, micronutrient status, and OD at-scale.Methods And FindingsCross-sectional datasets that were representative for India were obtained the Comprehensive National Nutrition Survey in 2016 to 2018 (n = 105,060 individuals aged 1 to 19 years). Consumption of deworming medication was described by age and community OD level. Logistic regression models were used to examine the relationship between deworming, cluster OD, and their interactions, with anemia and micronutrient deficiencies (iron, zinc, vitamin A, folate, and vitamin B12), controlling for age, sex, wealth, diet, and seasonality. These regression models further allowed us to identify a minimum OD rate after which deworming becomes ineffective. In sensitivity analyses, the association between deworming and deficiencies were tested in subsamples of communities classified into 3 OD levels based on statistical tertiles: OD free (0% of households in the community practicing OD), moderate OD (>0% and <30%), or high OD (at least 30%). Average deworming coverage and OD prevalence in the sample were 43.4% [IQR 26.0, 59.0] and 19.1% [IQR 0, 28.5], respectively. Controlling for other determinants of nutritional status, adolescents living in communities with higher OD levels had lower coverage of deworming and higher prevalence of anemia, zinc, vitamin A, and B12 deficiencies. Compared to those who were not dewormed, dewormed children and adolescents had lower odds of anemia (adjusted odds ratio 0.72, (95% CI [0.67, 0.78], p < 0.001) and deficiencies of iron 0.78, (95% CI [0.74, 0.82], p < 0.001) and folate 0.69, (95% CI [0.64,0.74], p<0.001)) in OD free communities. These protective effects remained significant for anemia but diminished for other micronutrient deficiencies in communities with moderate or high OD. Analysis of community OD indicated a threshold range of 30% to 60%, above which targeted deworming was no longer significantly associated with lower anemia, iron, and folate deficiency. The primary limitations of the study included potential for omitted variables bias and inability to capture longitudinal effects.ConclusionsModerate to high rates of OD significantly modify the association between deworming and micronutrient status in India. Public health policy could involve sequencing interventions, with focus on improving deworming coverage in communities that have achieved minimum thresholds of OD and re- triggering sanitation interventions in high OD communities prior to deworming days, ensuring high coverage for both. The efficacy of micronutrient supplementation as a complementary strategy to improve nutritional outcomes alongside deworming and OD elimination in this age group needs further study.Copyright: © 2024 Chakrabarti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.